3.76 \(\int \frac{\text{csch}(x)}{a+b \sinh (x)} \, dx\)

Optimal. Leaf size=50 \[ \frac{2 b \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2}}-\frac{\tanh ^{-1}(\cosh (x))}{a} \]

[Out]

-(ArcTanh[Cosh[x]]/a) + (2*b*ArcTanh[(b - a*Tanh[x/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0756402, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.454, Rules used = {2747, 3770, 2660, 618, 206} \[ \frac{2 b \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2}}-\frac{\tanh ^{-1}(\cosh (x))}{a} \]

Antiderivative was successfully verified.

[In]

Int[Csch[x]/(a + b*Sinh[x]),x]

[Out]

-(ArcTanh[Cosh[x]]/a) + (2*b*ArcTanh[(b - a*Tanh[x/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2])

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}(x)}{a+b \sinh (x)} \, dx &=\frac{\int \text{csch}(x) \, dx}{a}-\frac{b \int \frac{1}{a+b \sinh (x)} \, dx}{a}\\ &=-\frac{\tanh ^{-1}(\cosh (x))}{a}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a+2 b x-a x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{a}\\ &=-\frac{\tanh ^{-1}(\cosh (x))}{a}+\frac{(4 b) \operatorname{Subst}\left (\int \frac{1}{4 \left (a^2+b^2\right )-x^2} \, dx,x,2 b-2 a \tanh \left (\frac{x}{2}\right )\right )}{a}\\ &=-\frac{\tanh ^{-1}(\cosh (x))}{a}+\frac{2 b \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2}}\\ \end{align*}

Mathematica [A]  time = 0.0494246, size = 58, normalized size = 1.16 \[ \frac{\log \left (\tanh \left (\frac{x}{2}\right )\right )-\frac{2 b \tan ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{-a^2-b^2}}\right )}{\sqrt{-a^2-b^2}}}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[x]/(a + b*Sinh[x]),x]

[Out]

((-2*b*ArcTan[(b - a*Tanh[x/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] + Log[Tanh[x/2]])/a

________________________________________________________________________________________

Maple [A]  time = 0.022, size = 49, normalized size = 1. \begin{align*}{\frac{1}{a}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) }-2\,{\frac{b}{a\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tanh \left ( x/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(x)/(a+b*sinh(x)),x)

[Out]

1/a*ln(tanh(1/2*x))-2/a*b/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tanh(1/2*x)-2*b)/(a^2+b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*sinh(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.23058, size = 456, normalized size = 9.12 \begin{align*} \frac{\sqrt{a^{2} + b^{2}} b \log \left (\frac{b^{2} \cosh \left (x\right )^{2} + b^{2} \sinh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) + 2 \, a^{2} + b^{2} + 2 \,{\left (b^{2} \cosh \left (x\right ) + a b\right )} \sinh \left (x\right ) + 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cosh \left (x\right ) + b \sinh \left (x\right ) + a\right )}}{b \cosh \left (x\right )^{2} + b \sinh \left (x\right )^{2} + 2 \, a \cosh \left (x\right ) + 2 \,{\left (b \cosh \left (x\right ) + a\right )} \sinh \left (x\right ) - b}\right ) -{\left (a^{2} + b^{2}\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) + 1\right ) +{\left (a^{2} + b^{2}\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) - 1\right )}{a^{3} + a b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*sinh(x)),x, algorithm="fricas")

[Out]

(sqrt(a^2 + b^2)*b*log((b^2*cosh(x)^2 + b^2*sinh(x)^2 + 2*a*b*cosh(x) + 2*a^2 + b^2 + 2*(b^2*cosh(x) + a*b)*si
nh(x) + 2*sqrt(a^2 + b^2)*(b*cosh(x) + b*sinh(x) + a))/(b*cosh(x)^2 + b*sinh(x)^2 + 2*a*cosh(x) + 2*(b*cosh(x)
 + a)*sinh(x) - b)) - (a^2 + b^2)*log(cosh(x) + sinh(x) + 1) + (a^2 + b^2)*log(cosh(x) + sinh(x) - 1))/(a^3 +
a*b^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}{\left (x \right )}}{a + b \sinh{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*sinh(x)),x)

[Out]

Integral(csch(x)/(a + b*sinh(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.38303, size = 111, normalized size = 2.22 \begin{align*} -\frac{b \log \left (\frac{{\left | 2 \, b e^{x} + 2 \, a - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{x} + 2 \, a + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} a} - \frac{\log \left (e^{x} + 1\right )}{a} + \frac{\log \left ({\left | e^{x} - 1 \right |}\right )}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*sinh(x)),x, algorithm="giac")

[Out]

-b*log(abs(2*b*e^x + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^x + 2*a + 2*sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*a) - lo
g(e^x + 1)/a + log(abs(e^x - 1))/a