3.348 \(\int f^{a+c x^2} \sinh (d+e x) \, dx\)

Optimal. Leaf size=133 \[ \frac{\sqrt{\pi } f^a e^{-\frac{e^2}{4 c \log (f)}-d} \text{Erfi}\left (\frac{e-2 c x \log (f)}{2 \sqrt{c} \sqrt{\log (f)}}\right )}{4 \sqrt{c} \sqrt{\log (f)}}+\frac{\sqrt{\pi } f^a e^{d-\frac{e^2}{4 c \log (f)}} \text{Erfi}\left (\frac{2 c x \log (f)+e}{2 \sqrt{c} \sqrt{\log (f)}}\right )}{4 \sqrt{c} \sqrt{\log (f)}} \]

[Out]

(E^(-d - e^2/(4*c*Log[f]))*f^a*Sqrt[Pi]*Erfi[(e - 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])])/(4*Sqrt[c]*Sqrt[Log
[f]]) + (E^(d - e^2/(4*c*Log[f]))*f^a*Sqrt[Pi]*Erfi[(e + 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])])/(4*Sqrt[c]*S
qrt[Log[f]])

________________________________________________________________________________________

Rubi [A]  time = 0.198095, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 4, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {5512, 2287, 2234, 2204} \[ \frac{\sqrt{\pi } f^a e^{-\frac{e^2}{4 c \log (f)}-d} \text{Erfi}\left (\frac{e-2 c x \log (f)}{2 \sqrt{c} \sqrt{\log (f)}}\right )}{4 \sqrt{c} \sqrt{\log (f)}}+\frac{\sqrt{\pi } f^a e^{d-\frac{e^2}{4 c \log (f)}} \text{Erfi}\left (\frac{2 c x \log (f)+e}{2 \sqrt{c} \sqrt{\log (f)}}\right )}{4 \sqrt{c} \sqrt{\log (f)}} \]

Antiderivative was successfully verified.

[In]

Int[f^(a + c*x^2)*Sinh[d + e*x],x]

[Out]

(E^(-d - e^2/(4*c*Log[f]))*f^a*Sqrt[Pi]*Erfi[(e - 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])])/(4*Sqrt[c]*Sqrt[Log
[f]]) + (E^(d - e^2/(4*c*Log[f]))*f^a*Sqrt[Pi]*Erfi[(e + 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])])/(4*Sqrt[c]*S
qrt[Log[f]])

Rule 5512

Int[(F_)^(u_)*Sinh[v_]^(n_.), x_Symbol] :> Int[ExpandTrigToExp[F^u, Sinh[v]^n, x], x] /; FreeQ[F, x] && (Linea
rQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0]

Rule 2287

Int[(u_.)*(F_)^(v_)*(G_)^(w_), x_Symbol] :> With[{z = v*Log[F] + w*Log[G]}, Int[u*NormalizeIntegrand[E^z, x],
x] /; BinomialQ[z, x] || (PolynomialQ[z, x] && LeQ[Exponent[z, x], 2])] /; FreeQ[{F, G}, x]

Rule 2234

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rubi steps

\begin{align*} \int f^{a+c x^2} \sinh (d+e x) \, dx &=\int \left (-\frac{1}{2} e^{-d-e x} f^{a+c x^2}+\frac{1}{2} e^{d+e x} f^{a+c x^2}\right ) \, dx\\ &=-\left (\frac{1}{2} \int e^{-d-e x} f^{a+c x^2} \, dx\right )+\frac{1}{2} \int e^{d+e x} f^{a+c x^2} \, dx\\ &=-\left (\frac{1}{2} \int e^{-d-e x+a \log (f)+c x^2 \log (f)} \, dx\right )+\frac{1}{2} \int e^{d+e x+a \log (f)+c x^2 \log (f)} \, dx\\ &=-\left (\frac{1}{2} \left (e^{-d-\frac{e^2}{4 c \log (f)}} f^a\right ) \int e^{\frac{(-e+2 c x \log (f))^2}{4 c \log (f)}} \, dx\right )+\frac{1}{2} \left (e^{d-\frac{e^2}{4 c \log (f)}} f^a\right ) \int e^{\frac{(e+2 c x \log (f))^2}{4 c \log (f)}} \, dx\\ &=\frac{e^{-d-\frac{e^2}{4 c \log (f)}} f^a \sqrt{\pi } \text{erfi}\left (\frac{e-2 c x \log (f)}{2 \sqrt{c} \sqrt{\log (f)}}\right )}{4 \sqrt{c} \sqrt{\log (f)}}+\frac{e^{d-\frac{e^2}{4 c \log (f)}} f^a \sqrt{\pi } \text{erfi}\left (\frac{e+2 c x \log (f)}{2 \sqrt{c} \sqrt{\log (f)}}\right )}{4 \sqrt{c} \sqrt{\log (f)}}\\ \end{align*}

Mathematica [A]  time = 0.157874, size = 104, normalized size = 0.78 \[ \frac{\sqrt{\pi } f^a e^{-\frac{e^2}{4 c \log (f)}} \left ((\sinh (d)-\cosh (d)) \text{Erfi}\left (\frac{2 c x \log (f)-e}{2 \sqrt{c} \sqrt{\log (f)}}\right )+(\sinh (d)+\cosh (d)) \text{Erfi}\left (\frac{2 c x \log (f)+e}{2 \sqrt{c} \sqrt{\log (f)}}\right )\right )}{4 \sqrt{c} \sqrt{\log (f)}} \]

Antiderivative was successfully verified.

[In]

Integrate[f^(a + c*x^2)*Sinh[d + e*x],x]

[Out]

(f^a*Sqrt[Pi]*(Erfi[(-e + 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])]*(-Cosh[d] + Sinh[d]) + Erfi[(e + 2*c*x*Log[f
])/(2*Sqrt[c]*Sqrt[Log[f]])]*(Cosh[d] + Sinh[d])))/(4*Sqrt[c]*E^(e^2/(4*c*Log[f]))*Sqrt[Log[f]])

________________________________________________________________________________________

Maple [A]  time = 0.106, size = 117, normalized size = 0.9 \begin{align*} -{\frac{\sqrt{\pi }{f}^{a}}{4}{{\rm e}^{{\frac{4\,d\ln \left ( f \right ) c-{e}^{2}}{4\,c\ln \left ( f \right ) }}}}{\it Erf} \left ( -\sqrt{-c\ln \left ( f \right ) }x+{\frac{e}{2}{\frac{1}{\sqrt{-c\ln \left ( f \right ) }}}} \right ){\frac{1}{\sqrt{-c\ln \left ( f \right ) }}}}-{\frac{\sqrt{\pi }{f}^{a}}{4}{{\rm e}^{-{\frac{4\,d\ln \left ( f \right ) c+{e}^{2}}{4\,c\ln \left ( f \right ) }}}}{\it Erf} \left ( \sqrt{-c\ln \left ( f \right ) }x+{\frac{e}{2}{\frac{1}{\sqrt{-c\ln \left ( f \right ) }}}} \right ){\frac{1}{\sqrt{-c\ln \left ( f \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(f^(c*x^2+a)*sinh(e*x+d),x)

[Out]

-1/4*Pi^(1/2)*f^a*exp(1/4*(4*d*ln(f)*c-e^2)/ln(f)/c)/(-c*ln(f))^(1/2)*erf(-(-c*ln(f))^(1/2)*x+1/2*e/(-c*ln(f))
^(1/2))-1/4*Pi^(1/2)*f^a*exp(-1/4*(4*d*ln(f)*c+e^2)/ln(f)/c)/(-c*ln(f))^(1/2)*erf((-c*ln(f))^(1/2)*x+1/2*e/(-c
*ln(f))^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.03333, size = 142, normalized size = 1.07 \begin{align*} \frac{\sqrt{\pi } f^{a} \operatorname{erf}\left (\sqrt{-c \log \left (f\right )} x - \frac{e}{2 \, \sqrt{-c \log \left (f\right )}}\right ) e^{\left (d - \frac{e^{2}}{4 \, c \log \left (f\right )}\right )}}{4 \, \sqrt{-c \log \left (f\right )}} - \frac{\sqrt{\pi } f^{a} \operatorname{erf}\left (\sqrt{-c \log \left (f\right )} x + \frac{e}{2 \, \sqrt{-c \log \left (f\right )}}\right ) e^{\left (-d - \frac{e^{2}}{4 \, c \log \left (f\right )}\right )}}{4 \, \sqrt{-c \log \left (f\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+a)*sinh(e*x+d),x, algorithm="maxima")

[Out]

1/4*sqrt(pi)*f^a*erf(sqrt(-c*log(f))*x - 1/2*e/sqrt(-c*log(f)))*e^(d - 1/4*e^2/(c*log(f)))/sqrt(-c*log(f)) - 1
/4*sqrt(pi)*f^a*erf(sqrt(-c*log(f))*x + 1/2*e/sqrt(-c*log(f)))*e^(-d - 1/4*e^2/(c*log(f)))/sqrt(-c*log(f))

________________________________________________________________________________________

Fricas [B]  time = 1.76429, size = 598, normalized size = 4.5 \begin{align*} -\frac{\sqrt{-c \log \left (f\right )}{\left (\sqrt{\pi } \cosh \left (\frac{4 \, a c \log \left (f\right )^{2} + 4 \, c d \log \left (f\right ) - e^{2}}{4 \, c \log \left (f\right )}\right ) + \sqrt{\pi } \sinh \left (\frac{4 \, a c \log \left (f\right )^{2} + 4 \, c d \log \left (f\right ) - e^{2}}{4 \, c \log \left (f\right )}\right )\right )} \operatorname{erf}\left (\frac{{\left (2 \, c x \log \left (f\right ) + e\right )} \sqrt{-c \log \left (f\right )}}{2 \, c \log \left (f\right )}\right ) - \sqrt{-c \log \left (f\right )}{\left (\sqrt{\pi } \cosh \left (\frac{4 \, a c \log \left (f\right )^{2} - 4 \, c d \log \left (f\right ) - e^{2}}{4 \, c \log \left (f\right )}\right ) + \sqrt{\pi } \sinh \left (\frac{4 \, a c \log \left (f\right )^{2} - 4 \, c d \log \left (f\right ) - e^{2}}{4 \, c \log \left (f\right )}\right )\right )} \operatorname{erf}\left (\frac{{\left (2 \, c x \log \left (f\right ) - e\right )} \sqrt{-c \log \left (f\right )}}{2 \, c \log \left (f\right )}\right )}{4 \, c \log \left (f\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+a)*sinh(e*x+d),x, algorithm="fricas")

[Out]

-1/4*(sqrt(-c*log(f))*(sqrt(pi)*cosh(1/4*(4*a*c*log(f)^2 + 4*c*d*log(f) - e^2)/(c*log(f))) + sqrt(pi)*sinh(1/4
*(4*a*c*log(f)^2 + 4*c*d*log(f) - e^2)/(c*log(f))))*erf(1/2*(2*c*x*log(f) + e)*sqrt(-c*log(f))/(c*log(f))) - s
qrt(-c*log(f))*(sqrt(pi)*cosh(1/4*(4*a*c*log(f)^2 - 4*c*d*log(f) - e^2)/(c*log(f))) + sqrt(pi)*sinh(1/4*(4*a*c
*log(f)^2 - 4*c*d*log(f) - e^2)/(c*log(f))))*erf(1/2*(2*c*x*log(f) - e)*sqrt(-c*log(f))/(c*log(f))))/(c*log(f)
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int f^{a + c x^{2}} \sinh{\left (d + e x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f**(c*x**2+a)*sinh(e*x+d),x)

[Out]

Integral(f**(a + c*x**2)*sinh(d + e*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.23743, size = 178, normalized size = 1.34 \begin{align*} -\frac{\sqrt{\pi } \operatorname{erf}\left (-\frac{1}{2} \, \sqrt{-c \log \left (f\right )}{\left (2 \, x + \frac{e}{c \log \left (f\right )}\right )}\right ) e^{\left (\frac{4 \, a c \log \left (f\right )^{2} + 4 \, c d \log \left (f\right ) - e^{2}}{4 \, c \log \left (f\right )}\right )}}{4 \, \sqrt{-c \log \left (f\right )}} + \frac{\sqrt{\pi } \operatorname{erf}\left (-\frac{1}{2} \, \sqrt{-c \log \left (f\right )}{\left (2 \, x - \frac{e}{c \log \left (f\right )}\right )}\right ) e^{\left (\frac{4 \, a c \log \left (f\right )^{2} - 4 \, c d \log \left (f\right ) - e^{2}}{4 \, c \log \left (f\right )}\right )}}{4 \, \sqrt{-c \log \left (f\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+a)*sinh(e*x+d),x, algorithm="giac")

[Out]

-1/4*sqrt(pi)*erf(-1/2*sqrt(-c*log(f))*(2*x + e/(c*log(f))))*e^(1/4*(4*a*c*log(f)^2 + 4*c*d*log(f) - e^2)/(c*l
og(f)))/sqrt(-c*log(f)) + 1/4*sqrt(pi)*erf(-1/2*sqrt(-c*log(f))*(2*x - e/(c*log(f))))*e^(1/4*(4*a*c*log(f)^2 -
 4*c*d*log(f) - e^2)/(c*log(f)))/sqrt(-c*log(f))