3.252 \(\int \frac{A+B \text{csch}(x)}{a+b \sinh (x)} \, dx\)

Optimal. Leaf size=58 \[ -\frac{2 (a A-b B) \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2}}-\frac{B \tanh ^{-1}(\cosh (x))}{a} \]

[Out]

-((B*ArcTanh[Cosh[x]])/a) - (2*(a*A - b*B)*ArcTanh[(b - a*Tanh[x/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2])

________________________________________________________________________________________

Rubi [A]  time = 0.157249, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {2828, 3001, 3770, 2660, 618, 206} \[ -\frac{2 (a A-b B) \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2}}-\frac{B \tanh ^{-1}(\cosh (x))}{a} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Csch[x])/(a + b*Sinh[x]),x]

[Out]

-((B*ArcTanh[Cosh[x]])/a) - (2*(a*A - b*B)*ArcTanh[(b - a*Tanh[x/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2])

Rule 2828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> In
t[((a + b*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n)/Sin[e + f*x]^n, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && Int
egerQ[n]

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \text{csch}(x)}{a+b \sinh (x)} \, dx &=-\left (i \int \frac{\text{csch}(x) (i B+i A \sinh (x))}{a+b \sinh (x)} \, dx\right )\\ &=\frac{B \int \text{csch}(x) \, dx}{a}+\frac{(a A-b B) \int \frac{1}{a+b \sinh (x)} \, dx}{a}\\ &=-\frac{B \tanh ^{-1}(\cosh (x))}{a}+\frac{(2 (a A-b B)) \operatorname{Subst}\left (\int \frac{1}{a+2 b x-a x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{a}\\ &=-\frac{B \tanh ^{-1}(\cosh (x))}{a}-\frac{(4 (a A-b B)) \operatorname{Subst}\left (\int \frac{1}{4 \left (a^2+b^2\right )-x^2} \, dx,x,2 b-2 a \tanh \left (\frac{x}{2}\right )\right )}{a}\\ &=-\frac{B \tanh ^{-1}(\cosh (x))}{a}-\frac{2 (a A-b B) \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2}}\\ \end{align*}

Mathematica [A]  time = 0.115828, size = 67, normalized size = 1.16 \[ \frac{\frac{2 (a A-b B) \tan ^{-1}\left (\frac{b-a \tanh \left (\frac{x}{2}\right )}{\sqrt{-a^2-b^2}}\right )}{\sqrt{-a^2-b^2}}+B \log \left (\tanh \left (\frac{x}{2}\right )\right )}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Csch[x])/(a + b*Sinh[x]),x]

[Out]

((2*(a*A - b*B)*ArcTan[(b - a*Tanh[x/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] + B*Log[Tanh[x/2]])/a

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 86, normalized size = 1.5 \begin{align*}{\frac{B}{a}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) }+2\,{\frac{A}{\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tanh \left ( x/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }-2\,{\frac{Bb}{a\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tanh \left ( x/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*csch(x))/(a+b*sinh(x)),x)

[Out]

B/a*ln(tanh(1/2*x))+2/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tanh(1/2*x)-2*b)/(a^2+b^2)^(1/2))*A-2*B/a*b/(a^2+b^2)^(
1/2)*arctanh(1/2*(2*a*tanh(1/2*x)-2*b)/(a^2+b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*csch(x))/(a+b*sinh(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 5.06544, size = 482, normalized size = 8.31 \begin{align*} -\frac{{\left (A a - B b\right )} \sqrt{a^{2} + b^{2}} \log \left (\frac{b^{2} \cosh \left (x\right )^{2} + b^{2} \sinh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) + 2 \, a^{2} + b^{2} + 2 \,{\left (b^{2} \cosh \left (x\right ) + a b\right )} \sinh \left (x\right ) + 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cosh \left (x\right ) + b \sinh \left (x\right ) + a\right )}}{b \cosh \left (x\right )^{2} + b \sinh \left (x\right )^{2} + 2 \, a \cosh \left (x\right ) + 2 \,{\left (b \cosh \left (x\right ) + a\right )} \sinh \left (x\right ) - b}\right ) +{\left (B a^{2} + B b^{2}\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) + 1\right ) -{\left (B a^{2} + B b^{2}\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) - 1\right )}{a^{3} + a b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*csch(x))/(a+b*sinh(x)),x, algorithm="fricas")

[Out]

-((A*a - B*b)*sqrt(a^2 + b^2)*log((b^2*cosh(x)^2 + b^2*sinh(x)^2 + 2*a*b*cosh(x) + 2*a^2 + b^2 + 2*(b^2*cosh(x
) + a*b)*sinh(x) + 2*sqrt(a^2 + b^2)*(b*cosh(x) + b*sinh(x) + a))/(b*cosh(x)^2 + b*sinh(x)^2 + 2*a*cosh(x) + 2
*(b*cosh(x) + a)*sinh(x) - b)) + (B*a^2 + B*b^2)*log(cosh(x) + sinh(x) + 1) - (B*a^2 + B*b^2)*log(cosh(x) + si
nh(x) - 1))/(a^3 + a*b^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \operatorname{csch}{\left (x \right )}}{a + b \sinh{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*csch(x))/(a+b*sinh(x)),x)

[Out]

Integral((A + B*csch(x))/(a + b*sinh(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.17163, size = 122, normalized size = 2.1 \begin{align*} -\frac{B \log \left (e^{x} + 1\right )}{a} + \frac{B \log \left ({\left | e^{x} - 1 \right |}\right )}{a} + \frac{{\left (A a - B b\right )} \log \left (\frac{{\left | 2 \, b e^{x} + 2 \, a - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{x} + 2 \, a + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*csch(x))/(a+b*sinh(x)),x, algorithm="giac")

[Out]

-B*log(e^x + 1)/a + B*log(abs(e^x - 1))/a + (A*a - B*b)*log(abs(2*b*e^x + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^x
 + 2*a + 2*sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*a)