3.151 \(\int \frac{1}{(a \sinh ^3(x))^{5/2}} \, dx\)

Optimal. Leaf size=135 \[ \frac{154 \sinh (x) \cosh (x)}{195 a^2 \sqrt{a \sinh ^3(x)}}-\frac{154 \coth (x)}{585 a^2 \sqrt{a \sinh ^3(x)}}-\frac{154 i \sinh ^2(x) E\left (\left .\frac{\pi }{4}-\frac{i x}{2}\right |2\right )}{195 a^2 \sqrt{i \sinh (x)} \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}+\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}} \]

[Out]

(-154*Coth[x])/(585*a^2*Sqrt[a*Sinh[x]^3]) + (22*Coth[x]*Csch[x]^2)/(117*a^2*Sqrt[a*Sinh[x]^3]) - (2*Coth[x]*C
sch[x]^4)/(13*a^2*Sqrt[a*Sinh[x]^3]) + (154*Cosh[x]*Sinh[x])/(195*a^2*Sqrt[a*Sinh[x]^3]) - (((154*I)/195)*Elli
pticE[Pi/4 - (I/2)*x, 2]*Sinh[x]^2)/(a^2*Sqrt[I*Sinh[x]]*Sqrt[a*Sinh[x]^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0607026, antiderivative size = 135, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {3207, 2636, 2640, 2639} \[ \frac{154 \sinh (x) \cosh (x)}{195 a^2 \sqrt{a \sinh ^3(x)}}-\frac{154 \coth (x)}{585 a^2 \sqrt{a \sinh ^3(x)}}-\frac{154 i \sinh ^2(x) E\left (\left .\frac{\pi }{4}-\frac{i x}{2}\right |2\right )}{195 a^2 \sqrt{i \sinh (x)} \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}+\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*Sinh[x]^3)^(-5/2),x]

[Out]

(-154*Coth[x])/(585*a^2*Sqrt[a*Sinh[x]^3]) + (22*Coth[x]*Csch[x]^2)/(117*a^2*Sqrt[a*Sinh[x]^3]) - (2*Coth[x]*C
sch[x]^4)/(13*a^2*Sqrt[a*Sinh[x]^3]) + (154*Cosh[x]*Sinh[x])/(195*a^2*Sqrt[a*Sinh[x]^3]) - (((154*I)/195)*Elli
pticE[Pi/4 - (I/2)*x, 2]*Sinh[x]^2)/(a^2*Sqrt[I*Sinh[x]]*Sqrt[a*Sinh[x]^3])

Rule 3207

Int[(u_.)*((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Sin[e + f*x]^n)^FracPart[p])/(Sin[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Sin[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\left (a \sinh ^3(x)\right )^{5/2}} \, dx &=\frac{\sinh ^{\frac{3}{2}}(x) \int \frac{1}{\sinh ^{\frac{15}{2}}(x)} \, dx}{a^2 \sqrt{a \sinh ^3(x)}}\\ &=-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}-\frac{\left (11 \sinh ^{\frac{3}{2}}(x)\right ) \int \frac{1}{\sinh ^{\frac{11}{2}}(x)} \, dx}{13 a^2 \sqrt{a \sinh ^3(x)}}\\ &=\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}+\frac{\left (77 \sinh ^{\frac{3}{2}}(x)\right ) \int \frac{1}{\sinh ^{\frac{7}{2}}(x)} \, dx}{117 a^2 \sqrt{a \sinh ^3(x)}}\\ &=-\frac{154 \coth (x)}{585 a^2 \sqrt{a \sinh ^3(x)}}+\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}-\frac{\left (77 \sinh ^{\frac{3}{2}}(x)\right ) \int \frac{1}{\sinh ^{\frac{3}{2}}(x)} \, dx}{195 a^2 \sqrt{a \sinh ^3(x)}}\\ &=-\frac{154 \coth (x)}{585 a^2 \sqrt{a \sinh ^3(x)}}+\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}+\frac{154 \cosh (x) \sinh (x)}{195 a^2 \sqrt{a \sinh ^3(x)}}-\frac{\left (77 \sinh ^{\frac{3}{2}}(x)\right ) \int \sqrt{\sinh (x)} \, dx}{195 a^2 \sqrt{a \sinh ^3(x)}}\\ &=-\frac{154 \coth (x)}{585 a^2 \sqrt{a \sinh ^3(x)}}+\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}+\frac{154 \cosh (x) \sinh (x)}{195 a^2 \sqrt{a \sinh ^3(x)}}-\frac{\left (77 \sinh ^2(x)\right ) \int \sqrt{i \sinh (x)} \, dx}{195 a^2 \sqrt{i \sinh (x)} \sqrt{a \sinh ^3(x)}}\\ &=-\frac{154 \coth (x)}{585 a^2 \sqrt{a \sinh ^3(x)}}+\frac{22 \coth (x) \text{csch}^2(x)}{117 a^2 \sqrt{a \sinh ^3(x)}}-\frac{2 \coth (x) \text{csch}^4(x)}{13 a^2 \sqrt{a \sinh ^3(x)}}+\frac{154 \cosh (x) \sinh (x)}{195 a^2 \sqrt{a \sinh ^3(x)}}-\frac{154 i E\left (\left .\frac{\pi }{4}-\frac{i x}{2}\right |2\right ) \sinh ^2(x)}{195 a^2 \sqrt{i \sinh (x)} \sqrt{a \sinh ^3(x)}}\\ \end{align*}

Mathematica [A]  time = 0.196194, size = 69, normalized size = 0.51 \[ \frac{462 \sinh (x) \cosh (x)-2 \coth (x) \left (45 \text{csch}^4(x)-55 \text{csch}^2(x)+77\right )+462 i (i \sinh (x))^{3/2} E\left (\left .\frac{1}{4} (\pi -2 i x)\right |2\right )}{585 a^2 \sqrt{a \sinh ^3(x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Sinh[x]^3)^(-5/2),x]

[Out]

(-2*Coth[x]*(77 - 55*Csch[x]^2 + 45*Csch[x]^4) + (462*I)*EllipticE[(Pi - (2*I)*x)/4, 2]*(I*Sinh[x])^(3/2) + 46
2*Cosh[x]*Sinh[x])/(585*a^2*Sqrt[a*Sinh[x]^3])

________________________________________________________________________________________

Maple [F]  time = 0.06, size = 0, normalized size = 0. \begin{align*} \int \left ( a \left ( \sinh \left ( x \right ) \right ) ^{3} \right ) ^{-{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*sinh(x)^3)^(5/2),x)

[Out]

int(1/(a*sinh(x)^3)^(5/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a \sinh \left (x\right )^{3}\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sinh(x)^3)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sinh(x)^3)^(-5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a \sinh \left (x\right )^{3}}}{a^{3} \sinh \left (x\right )^{9}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sinh(x)^3)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*sinh(x)^3)/(a^3*sinh(x)^9), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sinh(x)**3)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a \sinh \left (x\right )^{3}\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sinh(x)^3)^(5/2),x, algorithm="giac")

[Out]

integrate((a*sinh(x)^3)^(-5/2), x)