3.41 \(\int e^{\csc ^{-1}(a x)} x^2 \, dx\)

Optimal. Leaf size=95 \[ \frac{\left (\frac{4}{5}-\frac{12 i}{5}\right ) e^{(1+3 i) \csc ^{-1}(a x)} \, _2F_1\left (\frac{3}{2}-\frac{i}{2},3;\frac{5}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )}{a^3}-\frac{\left (\frac{8}{5}-\frac{24 i}{5}\right ) e^{(1+3 i) \csc ^{-1}(a x)} \, _2F_1\left (\frac{3}{2}-\frac{i}{2},4;\frac{5}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )}{a^3} \]

[Out]

((4/5 - (12*I)/5)*E^((1 + 3*I)*ArcCsc[a*x])*Hypergeometric2F1[3/2 - I/2, 3, 5/2 - I/2, E^((2*I)*ArcCsc[a*x])])
/a^3 - ((8/5 - (24*I)/5)*E^((1 + 3*I)*ArcCsc[a*x])*Hypergeometric2F1[3/2 - I/2, 4, 5/2 - I/2, E^((2*I)*ArcCsc[
a*x])])/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.120934, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {5267, 12, 4471, 2251} \[ \frac{\left (\frac{4}{5}-\frac{12 i}{5}\right ) e^{(1+3 i) \csc ^{-1}(a x)} \, _2F_1\left (\frac{3}{2}-\frac{i}{2},3;\frac{5}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )}{a^3}-\frac{\left (\frac{8}{5}-\frac{24 i}{5}\right ) e^{(1+3 i) \csc ^{-1}(a x)} \, _2F_1\left (\frac{3}{2}-\frac{i}{2},4;\frac{5}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )}{a^3} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCsc[a*x]*x^2,x]

[Out]

((4/5 - (12*I)/5)*E^((1 + 3*I)*ArcCsc[a*x])*Hypergeometric2F1[3/2 - I/2, 3, 5/2 - I/2, E^((2*I)*ArcCsc[a*x])])
/a^3 - ((8/5 - (24*I)/5)*E^((1 + 3*I)*ArcCsc[a*x])*Hypergeometric2F1[3/2 - I/2, 4, 5/2 - I/2, E^((2*I)*ArcCsc[
a*x])])/a^3

Rule 5267

Int[(u_.)*(f_)^(ArcCsc[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> -Dist[b^(-1), Subst[Int[(u /. x -> -(a/b
) + Csc[x]/b)*f^(c*x^n)*Csc[x]*Cot[x], x], x, ArcCsc[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4471

Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(G_)[(d_.) + (e_.)*(x_)]^(m_.)*(H_)[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol]
 :> Int[ExpandTrigToExp[F^(c*(a + b*x)), G[d + e*x]^m*H[d + e*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&
IGtQ[m, 0] && IGtQ[n, 0] && TrigQ[G] && TrigQ[H]

Rule 2251

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp
[(a^p*G^(h*(f + g*x))*Hypergeometric2F1[-p, (g*h*Log[G])/(d*e*Log[F]), (g*h*Log[G])/(d*e*Log[F]) + 1, Simplify
[-((b*F^(e*(c + d*x)))/a)]])/(g*h*Log[G]), x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && (ILtQ[p, 0] ||
 GtQ[a, 0])

Rubi steps

\begin{align*} \int e^{\csc ^{-1}(a x)} x^2 \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{e^x \cot (x) \csc ^3(x)}{a^2} \, dx,x,\csc ^{-1}(a x)\right )}{a}\\ &=-\frac{\operatorname{Subst}\left (\int e^x \cot (x) \csc ^3(x) \, dx,x,\csc ^{-1}(a x)\right )}{a^3}\\ &=-\frac{\operatorname{Subst}\left (\int \left (\frac{16 e^{(1+3 i) x}}{\left (-1+e^{2 i x}\right )^4}+\frac{8 e^{(1+3 i) x}}{\left (-1+e^{2 i x}\right )^3}\right ) \, dx,x,\csc ^{-1}(a x)\right )}{a^3}\\ &=-\frac{8 \operatorname{Subst}\left (\int \frac{e^{(1+3 i) x}}{\left (-1+e^{2 i x}\right )^3} \, dx,x,\csc ^{-1}(a x)\right )}{a^3}-\frac{16 \operatorname{Subst}\left (\int \frac{e^{(1+3 i) x}}{\left (-1+e^{2 i x}\right )^4} \, dx,x,\csc ^{-1}(a x)\right )}{a^3}\\ &=\frac{\left (\frac{4}{5}-\frac{12 i}{5}\right ) e^{(1+3 i) \csc ^{-1}(a x)} \, _2F_1\left (\frac{3}{2}-\frac{i}{2},3;\frac{5}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )}{a^3}-\frac{\left (\frac{8}{5}-\frac{24 i}{5}\right ) e^{(1+3 i) \csc ^{-1}(a x)} \, _2F_1\left (\frac{3}{2}-\frac{i}{2},4;\frac{5}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )}{a^3}\\ \end{align*}

Mathematica [A]  time = 0.451027, size = 79, normalized size = 0.83 \[ \frac{e^{\csc ^{-1}(a x)} \left (a^3 x^3 \left (-\cos \left (2 \csc ^{-1}(a x)\right )+\sin \left (2 \csc ^{-1}(a x)\right )+5\right )+(4+4 i) e^{i \csc ^{-1}(a x)} \, _2F_1\left (\frac{1}{2}-\frac{i}{2},1;\frac{3}{2}-\frac{i}{2};e^{2 i \csc ^{-1}(a x)}\right )\right )}{12 a^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCsc[a*x]*x^2,x]

[Out]

(E^ArcCsc[a*x]*((4 + 4*I)*E^(I*ArcCsc[a*x])*Hypergeometric2F1[1/2 - I/2, 1, 3/2 - I/2, E^((2*I)*ArcCsc[a*x])]
+ a^3*x^3*(5 - Cos[2*ArcCsc[a*x]] + Sin[2*ArcCsc[a*x]])))/(12*a^3)

________________________________________________________________________________________

Maple [F]  time = 0.198, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{{\rm arccsc} \left (ax\right )}}{x}^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(arccsc(a*x))*x^2,x)

[Out]

int(exp(arccsc(a*x))*x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} e^{\left (\operatorname{arccsc}\left (a x\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(arccsc(a*x))*x^2,x, algorithm="maxima")

[Out]

integrate(x^2*e^(arccsc(a*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x^{2} e^{\left (\operatorname{arccsc}\left (a x\right )\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(arccsc(a*x))*x^2,x, algorithm="fricas")

[Out]

integral(x^2*e^(arccsc(a*x)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} e^{\operatorname{acsc}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(acsc(a*x))*x**2,x)

[Out]

Integral(x**2*exp(acsc(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} e^{\left (\operatorname{arccsc}\left (a x\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(arccsc(a*x))*x^2,x, algorithm="giac")

[Out]

integrate(x^2*e^(arccsc(a*x)), x)