3.3 \(\int x^2 \sec ^{-1}(\sqrt{x}) \, dx\)

Optimal. Leaf size=47 \[ \frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )-\frac{1}{15} (x-1)^{5/2}-\frac{2}{9} (x-1)^{3/2}-\frac{\sqrt{x-1}}{3} \]

[Out]

-Sqrt[-1 + x]/3 - (2*(-1 + x)^(3/2))/9 - (-1 + x)^(5/2)/15 + (x^3*ArcSec[Sqrt[x]])/3

________________________________________________________________________________________

Rubi [A]  time = 0.017687, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {5270, 12, 43} \[ \frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )-\frac{1}{15} (x-1)^{5/2}-\frac{2}{9} (x-1)^{3/2}-\frac{\sqrt{x-1}}{3} \]

Antiderivative was successfully verified.

[In]

Int[x^2*ArcSec[Sqrt[x]],x]

[Out]

-Sqrt[-1 + x]/3 - (2*(-1 + x)^(3/2))/9 - (-1 + x)^(5/2)/15 + (x^3*ArcSec[Sqrt[x]])/3

Rule 5270

Int[((a_.) + ArcSec[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*(a + b*ArcSec[
u]))/(d*(m + 1)), x] - Dist[(b*u)/(d*(m + 1)*Sqrt[u^2]), Int[SimplifyIntegrand[((c + d*x)^(m + 1)*D[u, x])/(u*
Sqrt[u^2 - 1]), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !Funct
ionOfQ[(c + d*x)^(m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x^2 \sec ^{-1}\left (\sqrt{x}\right ) \, dx &=\frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )-\frac{1}{3} \int \frac{x^2}{2 \sqrt{-1+x}} \, dx\\ &=\frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )-\frac{1}{6} \int \frac{x^2}{\sqrt{-1+x}} \, dx\\ &=\frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )-\frac{1}{6} \int \left (\frac{1}{\sqrt{-1+x}}+2 \sqrt{-1+x}+(-1+x)^{3/2}\right ) \, dx\\ &=-\frac{1}{3} \sqrt{-1+x}-\frac{2}{9} (-1+x)^{3/2}-\frac{1}{15} (-1+x)^{5/2}+\frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0225538, size = 35, normalized size = 0.74 \[ \frac{1}{3} x^3 \sec ^{-1}\left (\sqrt{x}\right )-\frac{1}{45} \sqrt{x-1} \left (3 x^2+4 x+8\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*ArcSec[Sqrt[x]],x]

[Out]

-(Sqrt[-1 + x]*(8 + 4*x + 3*x^2))/45 + (x^3*ArcSec[Sqrt[x]])/3

________________________________________________________________________________________

Maple [A]  time = 0.108, size = 38, normalized size = 0.8 \begin{align*}{\frac{{x}^{3}}{3}{\rm arcsec} \left (\sqrt{x}\right )}-{\frac{ \left ( x-1 \right ) \left ( 3\,{x}^{2}+4\,x+8 \right ) }{45}{\frac{1}{\sqrt{{\frac{x-1}{x}}}}}{\frac{1}{\sqrt{x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*arcsec(x^(1/2)),x)

[Out]

1/3*x^3*arcsec(x^(1/2))-1/45*(x-1)*(3*x^2+4*x+8)/((x-1)/x)^(1/2)/x^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.00123, size = 70, normalized size = 1.49 \begin{align*} -\frac{1}{15} \, x^{\frac{5}{2}}{\left (-\frac{1}{x} + 1\right )}^{\frac{5}{2}} + \frac{1}{3} \, x^{3} \operatorname{arcsec}\left (\sqrt{x}\right ) - \frac{2}{9} \, x^{\frac{3}{2}}{\left (-\frac{1}{x} + 1\right )}^{\frac{3}{2}} - \frac{1}{3} \, \sqrt{x} \sqrt{-\frac{1}{x} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arcsec(x^(1/2)),x, algorithm="maxima")

[Out]

-1/15*x^(5/2)*(-1/x + 1)^(5/2) + 1/3*x^3*arcsec(sqrt(x)) - 2/9*x^(3/2)*(-1/x + 1)^(3/2) - 1/3*sqrt(x)*sqrt(-1/
x + 1)

________________________________________________________________________________________

Fricas [A]  time = 2.19825, size = 84, normalized size = 1.79 \begin{align*} \frac{1}{3} \, x^{3} \operatorname{arcsec}\left (\sqrt{x}\right ) - \frac{1}{45} \,{\left (3 \, x^{2} + 4 \, x + 8\right )} \sqrt{x - 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arcsec(x^(1/2)),x, algorithm="fricas")

[Out]

1/3*x^3*arcsec(sqrt(x)) - 1/45*(3*x^2 + 4*x + 8)*sqrt(x - 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*asec(x**(1/2)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.1321, size = 46, normalized size = 0.98 \begin{align*} \frac{1}{3} \, x^{3} \arccos \left (\frac{1}{\sqrt{x}}\right ) - \frac{1}{15} \,{\left (x - 1\right )}^{\frac{5}{2}} - \frac{2}{9} \,{\left (x - 1\right )}^{\frac{3}{2}} + \frac{8}{45} \, i - \frac{1}{3} \, \sqrt{x - 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arcsec(x^(1/2)),x, algorithm="giac")

[Out]

1/3*x^3*arccos(1/sqrt(x)) - 1/15*(x - 1)^(5/2) - 2/9*(x - 1)^(3/2) + 8/45*i - 1/3*sqrt(x - 1)