3.12 \(\int \frac{e^{n \cot ^{-1}(a x)}}{(c+a^2 c x^2)^{7/3}} \, dx\)

Optimal. Leaf size=272 \[ -\frac{240 x \sqrt [3]{\frac{1}{a^2 x^2}+1} \left (1-\frac{i}{a x}\right )^{\frac{1}{6} (-2+3 i n)} \left (1+\frac{i}{a x}\right )^{\frac{1}{6} (4-3 i n)} \left (\frac{a-\frac{i}{x}}{a+\frac{i}{x}}\right )^{\frac{1}{6} (2-3 i n)} \, _2F_1\left (-\frac{1}{3},\frac{1}{6} (2-3 i n);\frac{2}{3};\frac{2 i}{\left (a+\frac{i}{x}\right ) x}\right )}{c^2 \left (9 n^2+4\right ) \left (9 n^2+64\right ) \sqrt [3]{a^2 c x^2+c}}-\frac{120 (3 n-2 a x) e^{n \cot ^{-1}(a x)}}{a c^2 \left (9 n^2+4\right ) \left (9 n^2+64\right ) \sqrt [3]{a^2 c x^2+c}}-\frac{3 (3 n-8 a x) e^{n \cot ^{-1}(a x)}}{a c \left (9 n^2+64\right ) \left (a^2 c x^2+c\right )^{4/3}} \]

[Out]

(-3*E^(n*ArcCot[a*x])*(3*n - 8*a*x))/(a*c*(64 + 9*n^2)*(c + a^2*c*x^2)^(4/3)) - (120*E^(n*ArcCot[a*x])*(3*n -
2*a*x))/(a*c^2*(4 + 9*n^2)*(64 + 9*n^2)*(c + a^2*c*x^2)^(1/3)) - (240*(1 + 1/(a^2*x^2))^(1/3)*((a - I/x)/(a +
I/x))^((2 - (3*I)*n)/6)*(1 - I/(a*x))^((-2 + (3*I)*n)/6)*(1 + I/(a*x))^((4 - (3*I)*n)/6)*x*Hypergeometric2F1[-
1/3, (2 - (3*I)*n)/6, 2/3, (2*I)/((a + I/x)*x)])/(c^2*(4 + 9*n^2)*(64 + 9*n^2)*(c + a^2*c*x^2)^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.300229, antiderivative size = 272, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {5115, 5122, 5126, 132} \[ -\frac{240 x \sqrt [3]{\frac{1}{a^2 x^2}+1} \left (1-\frac{i}{a x}\right )^{\frac{1}{6} (-2+3 i n)} \left (1+\frac{i}{a x}\right )^{\frac{1}{6} (4-3 i n)} \left (\frac{a-\frac{i}{x}}{a+\frac{i}{x}}\right )^{\frac{1}{6} (2-3 i n)} \, _2F_1\left (-\frac{1}{3},\frac{1}{6} (2-3 i n);\frac{2}{3};\frac{2 i}{\left (a+\frac{i}{x}\right ) x}\right )}{c^2 \left (9 n^2+4\right ) \left (9 n^2+64\right ) \sqrt [3]{a^2 c x^2+c}}-\frac{120 (3 n-2 a x) e^{n \cot ^{-1}(a x)}}{a c^2 \left (9 n^2+4\right ) \left (9 n^2+64\right ) \sqrt [3]{a^2 c x^2+c}}-\frac{3 (3 n-8 a x) e^{n \cot ^{-1}(a x)}}{a c \left (9 n^2+64\right ) \left (a^2 c x^2+c\right )^{4/3}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcCot[a*x])/(c + a^2*c*x^2)^(7/3),x]

[Out]

(-3*E^(n*ArcCot[a*x])*(3*n - 8*a*x))/(a*c*(64 + 9*n^2)*(c + a^2*c*x^2)^(4/3)) - (120*E^(n*ArcCot[a*x])*(3*n -
2*a*x))/(a*c^2*(4 + 9*n^2)*(64 + 9*n^2)*(c + a^2*c*x^2)^(1/3)) - (240*(1 + 1/(a^2*x^2))^(1/3)*((a - I/x)/(a +
I/x))^((2 - (3*I)*n)/6)*(1 - I/(a*x))^((-2 + (3*I)*n)/6)*(1 + I/(a*x))^((4 - (3*I)*n)/6)*x*Hypergeometric2F1[-
1/3, (2 - (3*I)*n)/6, 2/3, (2*I)/((a + I/x)*x)])/(c^2*(4 + 9*n^2)*(64 + 9*n^2)*(c + a^2*c*x^2)^(1/3))

Rule 5115

Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((n + 2*a*(p + 1)*x)*(c + d*x^
2)^(p + 1)*E^(n*ArcCot[a*x]))/(a*c*(n^2 + 4*(p + 1)^2)), x] + Dist[(2*(p + 1)*(2*p + 3))/(c*(n^2 + 4*(p + 1)^2
)), Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1]
 && NeQ[p, -3/2] && NeQ[n^2 + 4*(p + 1)^2, 0] &&  !(IntegerQ[p] && IntegerQ[(I*n)/2]) &&  !( !IntegerQ[p] && I
ntegerQ[(I*n - 1)/2])

Rule 5122

Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(1
 + 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 + 1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] &
& EqQ[d, a^2*c] &&  !IntegerQ[(I*n)/2] &&  !IntegerQ[p]

Rule 5126

Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Su
bst[Int[((1 - (I*x)/a)^(p + (I*n)/2)*(1 + (I*x)/a)^(p - (I*n)/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d
, m, n, p}, x] && EqQ[c, a^2*d] &&  !IntegerQ[(I*n)/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !(IntegerQ[2*p] && In
tegerQ[p + (I*n)/2]) &&  !IntegerQ[m]

Rule 132

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x
)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1)*Hypergeometric2F1[m + 1, -n, m + 2, -(((d*e - c*f)*(a + b*x))/((b*c -
a*d)*(e + f*x)))])/(((b*e - a*f)*(m + 1))*(((b*e - a*f)*(c + d*x))/((b*c - a*d)*(e + f*x)))^n), x] /; FreeQ[{a
, b, c, d, e, f, m, n, p}, x] && EqQ[m + n + p + 2, 0] &&  !IntegerQ[n]

Rubi steps

\begin{align*} \int \frac{e^{n \cot ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{7/3}} \, dx &=-\frac{3 e^{n \cot ^{-1}(a x)} (3 n-8 a x)}{a c \left (64+9 n^2\right ) \left (c+a^2 c x^2\right )^{4/3}}+\frac{40 \int \frac{e^{n \cot ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{4/3}} \, dx}{c \left (64+9 n^2\right )}\\ &=-\frac{3 e^{n \cot ^{-1}(a x)} (3 n-8 a x)}{a c \left (64+9 n^2\right ) \left (c+a^2 c x^2\right )^{4/3}}-\frac{120 e^{n \cot ^{-1}(a x)} (3 n-2 a x)}{a c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \sqrt [3]{c+a^2 c x^2}}-\frac{80 \int \frac{e^{n \cot ^{-1}(a x)}}{\sqrt [3]{c+a^2 c x^2}} \, dx}{c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right )}\\ &=-\frac{3 e^{n \cot ^{-1}(a x)} (3 n-8 a x)}{a c \left (64+9 n^2\right ) \left (c+a^2 c x^2\right )^{4/3}}-\frac{120 e^{n \cot ^{-1}(a x)} (3 n-2 a x)}{a c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \sqrt [3]{c+a^2 c x^2}}-\frac{\left (80 \sqrt [3]{1+\frac{1}{a^2 x^2}} x^{2/3}\right ) \int \frac{e^{n \cot ^{-1}(a x)}}{\sqrt [3]{1+\frac{1}{a^2 x^2}} x^{2/3}} \, dx}{c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \sqrt [3]{c+a^2 c x^2}}\\ &=-\frac{3 e^{n \cot ^{-1}(a x)} (3 n-8 a x)}{a c \left (64+9 n^2\right ) \left (c+a^2 c x^2\right )^{4/3}}-\frac{120 e^{n \cot ^{-1}(a x)} (3 n-2 a x)}{a c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \sqrt [3]{c+a^2 c x^2}}+\frac{\left (80 \sqrt [3]{1+\frac{1}{a^2 x^2}}\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{i x}{a}\right )^{-\frac{1}{3}+\frac{i n}{2}} \left (1+\frac{i x}{a}\right )^{-\frac{1}{3}-\frac{i n}{2}}}{x^{4/3}} \, dx,x,\frac{1}{x}\right )}{c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \left (\frac{1}{x}\right )^{2/3} \sqrt [3]{c+a^2 c x^2}}\\ &=-\frac{3 e^{n \cot ^{-1}(a x)} (3 n-8 a x)}{a c \left (64+9 n^2\right ) \left (c+a^2 c x^2\right )^{4/3}}-\frac{120 e^{n \cot ^{-1}(a x)} (3 n-2 a x)}{a c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \sqrt [3]{c+a^2 c x^2}}-\frac{240 \sqrt [3]{1+\frac{1}{a^2 x^2}} \left (\frac{a-\frac{i}{x}}{a+\frac{i}{x}}\right )^{\frac{1}{6} (2-3 i n)} \left (1-\frac{i}{a x}\right )^{\frac{1}{6} (-2+3 i n)} \left (1+\frac{i}{a x}\right )^{\frac{1}{6} (4-3 i n)} x \, _2F_1\left (-\frac{1}{3},\frac{1}{6} (2-3 i n);\frac{2}{3};\frac{2 i}{\left (a+\frac{i}{x}\right ) x}\right )}{c^2 \left (4+9 n^2\right ) \left (64+9 n^2\right ) \sqrt [3]{c+a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.18656, size = 100, normalized size = 0.37 \[ -\frac{3 \left (a^2 c x^2+c\right )^{2/3} \left (-1+e^{2 i \cot ^{-1}(a x)}\right ) e^{(n-2 i) \cot ^{-1}(a x)} \, _2F_1\left (1,\frac{i n}{2}+\frac{7}{3};\frac{i n}{2}-\frac{1}{3};e^{-2 i \cot ^{-1}(a x)}\right )}{a c^3 (3 n+8 i) \left (a^2 x^2+1\right )^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(n*ArcCot[a*x])/(c + a^2*c*x^2)^(7/3),x]

[Out]

(-3*E^((-2*I + n)*ArcCot[a*x])*(-1 + E^((2*I)*ArcCot[a*x]))*(c + a^2*c*x^2)^(2/3)*Hypergeometric2F1[1, 7/3 + (
I/2)*n, -1/3 + (I/2)*n, E^((-2*I)*ArcCot[a*x])])/(a*c^3*(8*I + 3*n)*(1 + a^2*x^2)^2)

________________________________________________________________________________________

Maple [F]  time = 0.294, size = 0, normalized size = 0. \begin{align*} \int{{{\rm e}^{n{\rm arccot} \left (ax\right )}} \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{7}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arccot(a*x))/(a^2*c*x^2+c)^(7/3),x)

[Out]

int(exp(n*arccot(a*x))/(a^2*c*x^2+c)^(7/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (n \operatorname{arccot}\left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{7}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccot(a*x))/(a^2*c*x^2+c)^(7/3),x, algorithm="maxima")

[Out]

integrate(e^(n*arccot(a*x))/(a^2*c*x^2 + c)^(7/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (a^{2} c x^{2} + c\right )}^{\frac{2}{3}} e^{\left (n \operatorname{arccot}\left (a x\right )\right )}}{a^{6} c^{3} x^{6} + 3 \, a^{4} c^{3} x^{4} + 3 \, a^{2} c^{3} x^{2} + c^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccot(a*x))/(a^2*c*x^2+c)^(7/3),x, algorithm="fricas")

[Out]

integral((a^2*c*x^2 + c)^(2/3)*e^(n*arccot(a*x))/(a^6*c^3*x^6 + 3*a^4*c^3*x^4 + 3*a^2*c^3*x^2 + c^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*acot(a*x))/(a**2*c*x**2+c)**(7/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (n \operatorname{arccot}\left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{7}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccot(a*x))/(a^2*c*x^2+c)^(7/3),x, algorithm="giac")

[Out]

integrate(e^(n*arccot(a*x))/(a^2*c*x^2 + c)^(7/3), x)