3.91 \(\int x^{3/2} \cot ^{-1}(\sqrt{x}) \, dx\)

Optimal. Leaf size=36 \[ \frac{x^2}{10}+\frac{2}{5} x^{5/2} \cot ^{-1}\left (\sqrt{x}\right )-\frac{x}{5}+\frac{1}{5} \log (x+1) \]

[Out]

-x/5 + x^2/10 + (2*x^(5/2)*ArcCot[Sqrt[x]])/5 + Log[1 + x]/5

________________________________________________________________________________________

Rubi [A]  time = 0.0137792, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {5034, 43} \[ \frac{x^2}{10}+\frac{2}{5} x^{5/2} \cot ^{-1}\left (\sqrt{x}\right )-\frac{x}{5}+\frac{1}{5} \log (x+1) \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)*ArcCot[Sqrt[x]],x]

[Out]

-x/5 + x^2/10 + (2*x^(5/2)*ArcCot[Sqrt[x]])/5 + Log[1 + x]/5

Rule 5034

Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcCot
[c*x^n]))/(d*(m + 1)), x] + Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 + c^2*x^(2*n)), x], x]
/; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x^{3/2} \cot ^{-1}\left (\sqrt{x}\right ) \, dx &=\frac{2}{5} x^{5/2} \cot ^{-1}\left (\sqrt{x}\right )+\frac{1}{5} \int \frac{x^2}{1+x} \, dx\\ &=\frac{2}{5} x^{5/2} \cot ^{-1}\left (\sqrt{x}\right )+\frac{1}{5} \int \left (-1+x+\frac{1}{1+x}\right ) \, dx\\ &=-\frac{x}{5}+\frac{x^2}{10}+\frac{2}{5} x^{5/2} \cot ^{-1}\left (\sqrt{x}\right )+\frac{1}{5} \log (1+x)\\ \end{align*}

Mathematica [A]  time = 0.0161584, size = 29, normalized size = 0.81 \[ \frac{1}{10} \left (4 x^{5/2} \cot ^{-1}\left (\sqrt{x}\right )+(x-2) x+2 \log (x+1)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)*ArcCot[Sqrt[x]],x]

[Out]

((-2 + x)*x + 4*x^(5/2)*ArcCot[Sqrt[x]] + 2*Log[1 + x])/10

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 25, normalized size = 0.7 \begin{align*} -{\frac{x}{5}}+{\frac{{x}^{2}}{10}}+{\frac{2}{5}{x}^{{\frac{5}{2}}}{\rm arccot} \left (\sqrt{x}\right )}+{\frac{\ln \left ( x+1 \right ) }{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*arccot(x^(1/2)),x)

[Out]

-1/5*x+1/10*x^2+2/5*x^(5/2)*arccot(x^(1/2))+1/5*ln(x+1)

________________________________________________________________________________________

Maxima [A]  time = 0.973942, size = 32, normalized size = 0.89 \begin{align*} \frac{2}{5} \, x^{\frac{5}{2}} \operatorname{arccot}\left (\sqrt{x}\right ) + \frac{1}{10} \, x^{2} - \frac{1}{5} \, x + \frac{1}{5} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*arccot(x^(1/2)),x, algorithm="maxima")

[Out]

2/5*x^(5/2)*arccot(sqrt(x)) + 1/10*x^2 - 1/5*x + 1/5*log(x + 1)

________________________________________________________________________________________

Fricas [A]  time = 2.20899, size = 88, normalized size = 2.44 \begin{align*} \frac{2}{5} \, x^{\frac{5}{2}} \operatorname{arccot}\left (\sqrt{x}\right ) + \frac{1}{10} \, x^{2} - \frac{1}{5} \, x + \frac{1}{5} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*arccot(x^(1/2)),x, algorithm="fricas")

[Out]

2/5*x^(5/2)*arccot(sqrt(x)) + 1/10*x^2 - 1/5*x + 1/5*log(x + 1)

________________________________________________________________________________________

Sympy [B]  time = 7.88749, size = 85, normalized size = 2.36 \begin{align*} \frac{4 x^{\frac{7}{2}} \operatorname{acot}{\left (\sqrt{x} \right )}}{10 x + 10} + \frac{4 x^{\frac{5}{2}} \operatorname{acot}{\left (\sqrt{x} \right )}}{10 x + 10} + \frac{x^{3}}{10 x + 10} - \frac{x^{2}}{10 x + 10} + \frac{2 x \log{\left (x + 1 \right )}}{10 x + 10} + \frac{2 \log{\left (x + 1 \right )}}{10 x + 10} + \frac{2}{10 x + 10} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)*acot(x**(1/2)),x)

[Out]

4*x**(7/2)*acot(sqrt(x))/(10*x + 10) + 4*x**(5/2)*acot(sqrt(x))/(10*x + 10) + x**3/(10*x + 10) - x**2/(10*x +
10) + 2*x*log(x + 1)/(10*x + 10) + 2*log(x + 1)/(10*x + 10) + 2/(10*x + 10)

________________________________________________________________________________________

Giac [A]  time = 1.09629, size = 32, normalized size = 0.89 \begin{align*} \frac{2}{5} \, x^{\frac{5}{2}} \arctan \left (\frac{1}{\sqrt{x}}\right ) + \frac{1}{10} \, x^{2} - \frac{1}{5} \, x + \frac{1}{5} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*arccot(x^(1/2)),x, algorithm="giac")

[Out]

2/5*x^(5/2)*arctan(1/sqrt(x)) + 1/10*x^2 - 1/5*x + 1/5*log(x + 1)