3.153 \(\int \frac{(a+b \cot ^{-1}(\frac{\sqrt{1-c x}}{\sqrt{1+c x}}))^2}{1-c^2 x^2} \, dx\)

Optimal. Leaf size=321 \[ \frac{i b \text{PolyLog}\left (2,1-\frac{2 i}{\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i}\right ) \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}\right )\right )}{c}-\frac{i b \text{PolyLog}\left (2,1-\frac{2 \sqrt{1-c x}}{\sqrt{c x+1} \left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i\right )}\right ) \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}\right )\right )}{c}+\frac{b^2 \text{PolyLog}\left (3,1-\frac{2 i}{\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i}\right )}{2 c}-\frac{b^2 \text{PolyLog}\left (3,1-\frac{2 \sqrt{1-c x}}{\sqrt{c x+1} \left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i\right )}\right )}{2 c}-\frac{2 \coth ^{-1}\left (1-\frac{2}{1+\frac{i \sqrt{1-c x}}{\sqrt{c x+1}}}\right ) \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}\right )\right )^2}{c} \]

[Out]

(-2*(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2*ArcCoth[1 - 2/(1 + (I*Sqrt[1 - c*x])/Sqrt[1 + c*x])])/c + (I
*b*(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*PolyLog[2, 1 - (2*I)/(I + Sqrt[1 - c*x]/Sqrt[1 + c*x])])/c - (I
*b*(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*PolyLog[2, 1 - (2*Sqrt[1 - c*x])/(Sqrt[1 + c*x]*(I + Sqrt[1 - c
*x]/Sqrt[1 + c*x]))])/c + (b^2*PolyLog[3, 1 - (2*I)/(I + Sqrt[1 - c*x]/Sqrt[1 + c*x])])/(2*c) - (b^2*PolyLog[3
, 1 - (2*Sqrt[1 - c*x])/(Sqrt[1 + c*x]*(I + Sqrt[1 - c*x]/Sqrt[1 + c*x]))])/(2*c)

________________________________________________________________________________________

Rubi [A]  time = 0.319821, antiderivative size = 321, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {6681, 4851, 4989, 4885, 4993, 6610} \[ \frac{i b \text{PolyLog}\left (2,1-\frac{2 i}{\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i}\right ) \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}\right )\right )}{c}-\frac{i b \text{PolyLog}\left (2,1-\frac{2 \sqrt{1-c x}}{\sqrt{c x+1} \left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i\right )}\right ) \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}\right )\right )}{c}+\frac{b^2 \text{PolyLog}\left (3,1-\frac{2 i}{\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i}\right )}{2 c}-\frac{b^2 \text{PolyLog}\left (3,1-\frac{2 \sqrt{1-c x}}{\sqrt{c x+1} \left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}+i\right )}\right )}{2 c}-\frac{2 \coth ^{-1}\left (1-\frac{2}{1+\frac{i \sqrt{1-c x}}{\sqrt{c x+1}}}\right ) \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{c x+1}}\right )\right )^2}{c} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2),x]

[Out]

(-2*(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2*ArcCoth[1 - 2/(1 + (I*Sqrt[1 - c*x])/Sqrt[1 + c*x])])/c + (I
*b*(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*PolyLog[2, 1 - (2*I)/(I + Sqrt[1 - c*x]/Sqrt[1 + c*x])])/c - (I
*b*(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*PolyLog[2, 1 - (2*Sqrt[1 - c*x])/(Sqrt[1 + c*x]*(I + Sqrt[1 - c
*x]/Sqrt[1 + c*x]))])/c + (b^2*PolyLog[3, 1 - (2*I)/(I + Sqrt[1 - c*x]/Sqrt[1 + c*x])])/(2*c) - (b^2*PolyLog[3
, 1 - (2*Sqrt[1 - c*x])/(Sqrt[1 + c*x]*(I + Sqrt[1 - c*x]/Sqrt[1 + c*x]))])/(2*c)

Rule 6681

Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^
2), x_Symbol] :> Dist[(2*e*g)/(C*(e*f - d*g)), Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x
]], x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n, 0]

Rule 4851

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcCot[c*x])^p*ArcCoth[1 - 2/(1 +
 I*c*x)], x] + Dist[2*b*c*p, Int[((a + b*ArcCot[c*x])^(p - 1)*ArcCoth[1 - 2/(1 + I*c*x)])/(1 + c^2*x^2), x], x
] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 4989

Int[(ArcCoth[u_]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[(
Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCot[c*x])^p)/(d + e*x^2), x], x] - Dist[1/2, Int[(Log[SimplifyInt
egrand[1 - 1/u, x]]*(a + b*ArcCot[c*x])^p)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && E
qQ[e, c^2*d] && EqQ[u^2 - (1 - (2*I)/(I - c*x))^2, 0]

Rule 4885

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Simp[(a + b*ArcCot[c*x])^(p
+ 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]

Rule 4993

Int[(Log[u_]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(I*(a + b*ArcC
ot[c*x])^p*PolyLog[2, 1 - u])/(2*c*d), x] + Dist[(b*p*I)/2, Int[((a + b*ArcCot[c*x])^(p - 1)*PolyLog[2, 1 - u]
)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - (2*I
)/(I + c*x))^2, 0]

Rule 6610

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin{align*} \int \frac{\left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \cot ^{-1}(x)\right )^2}{x} \, dx,x,\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}{c}\\ &=-\frac{2 \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right )^2 \coth ^{-1}\left (1-\frac{2}{1+\frac{i \sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{c}-\frac{(4 b) \operatorname{Subst}\left (\int \frac{\left (a+b \cot ^{-1}(x)\right ) \coth ^{-1}\left (1-\frac{2}{1+i x}\right )}{1+x^2} \, dx,x,\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}{c}\\ &=-\frac{2 \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right )^2 \coth ^{-1}\left (1-\frac{2}{1+\frac{i \sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{c}+\frac{(2 b) \operatorname{Subst}\left (\int \frac{\left (a+b \cot ^{-1}(x)\right ) \log \left (\frac{2 i}{i+x}\right )}{1+x^2} \, dx,x,\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}{c}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{\left (a+b \cot ^{-1}(x)\right ) \log \left (\frac{2 x}{i+x}\right )}{1+x^2} \, dx,x,\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}{c}\\ &=-\frac{2 \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right )^2 \coth ^{-1}\left (1-\frac{2}{1+\frac{i \sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{c}+\frac{i b \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right ) \text{Li}_2\left (1-\frac{2 i}{i+\frac{\sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{c}-\frac{i b \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right ) \text{Li}_2\left (1-\frac{2 \sqrt{1-c x}}{\sqrt{1+c x} \left (i+\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}\right )}{c}+\frac{\left (i b^2\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (1-\frac{2 i}{i+x}\right )}{1+x^2} \, dx,x,\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}{c}-\frac{\left (i b^2\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (1-\frac{2 x}{i+x}\right )}{1+x^2} \, dx,x,\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}{c}\\ &=-\frac{2 \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right )^2 \coth ^{-1}\left (1-\frac{2}{1+\frac{i \sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{c}+\frac{i b \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right ) \text{Li}_2\left (1-\frac{2 i}{i+\frac{\sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{c}-\frac{i b \left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right ) \text{Li}_2\left (1-\frac{2 \sqrt{1-c x}}{\sqrt{1+c x} \left (i+\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}\right )}{c}+\frac{b^2 \text{Li}_3\left (1-\frac{2 i}{i+\frac{\sqrt{1-c x}}{\sqrt{1+c x}}}\right )}{2 c}-\frac{b^2 \text{Li}_3\left (1-\frac{2 \sqrt{1-c x}}{\sqrt{1+c x} \left (i+\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )}\right )}{2 c}\\ \end{align*}

Mathematica [F]  time = 0.535587, size = 0, normalized size = 0. \[ \int \frac{\left (a+b \cot ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2),x]

[Out]

Integrate[(a + b*ArcCot[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2), x]

________________________________________________________________________________________

Maple [B]  time = 1.422, size = 931, normalized size = 2.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x)

[Out]

1/2*a^2/c*ln(c*x+1)-1/2*a^2/c*ln(c*x-1)+b^2/c*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2))^2*ln(1-(I+(-c*x+1)^(1/2)/(c
*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))+I*b^2/c*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2))*polylog(2,-(I+(-c*x+1)^(
1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1))+2*b^2/c*polylog(3,(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+
1)+1)^(1/2))+b^2/c*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2))^2*ln(1+(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x
+1)+1)^(1/2))-2*I*a*b/c*polylog(2,(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))+2*b^2/c*polylog
(3,-(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))-b^2/c*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2))^2*
ln((I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1)+1)+I*a*b/c*polylog(2,-(I+(-c*x+1)^(1/2)/(c*x+1)^(1/
2))^2/((-c*x+1)/(c*x+1)+1))-1/2*b^2/c*polylog(3,-(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1))+2*a*
b/c*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2))*ln(1+(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))-2*I
*a*b/c*polylog(2,-(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))+2*a*b/c*arccot((-c*x+1)^(1/2)/(
c*x+1)^(1/2))*ln(1-(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))-2*I*b^2/c*arccot((-c*x+1)^(1/2
)/(c*x+1)^(1/2))*polylog(2,(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))-2*a*b/c*arccot((-c*x+1
)^(1/2)/(c*x+1)^(1/2))*ln((I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1)+1)-2*I*b^2/c*arccot((-c*x+1)
^(1/2)/(c*x+1)^(1/2))*polylog(2,-(I+(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{1}{2} \, a^{2}{\left (\frac{\log \left (c x + 1\right )}{c} - \frac{\log \left (c x - 1\right )}{c}\right )} - \frac{b^{2} \log \left (2\right )^{2} \log \left (c x + 1\right ) - b^{2} \log \left (2\right )^{2} \log \left (-c x + 1\right ) - 4 \,{\left (b^{2} \log \left (c x + 1\right ) - b^{2} \log \left (-c x + 1\right )\right )} \arctan \left (\sqrt{c x + 1}, \sqrt{-c x + 1}\right )^{2} -{\left (12 \, b^{2}{\left (\frac{\log \left (c x + 1\right )}{c} - \frac{\log \left (c x - 1\right )}{c}\right )} \arctan \left (\frac{\sqrt{c x + 1}}{\sqrt{-c x + 1}}\right )^{2} + b^{2}{\left (\frac{\log \left (c x + 1\right )}{c} - \frac{\log \left (c x - 1\right )}{c}\right )} \log \left (2\right )^{2} + 4 \, b^{2} \int \frac{\sqrt{c x + 1} \sqrt{-c x + 1} \arctan \left (\frac{\sqrt{c x + 1}}{\sqrt{-c x + 1}}\right ) \log \left (c x + 1\right )}{c^{2} x^{2} - 1}\,{d x} - 4 \, b^{2} \int \frac{\sqrt{c x + 1} \sqrt{-c x + 1} \arctan \left (\frac{\sqrt{c x + 1}}{\sqrt{-c x + 1}}\right ) \log \left (-c x + 1\right )}{c^{2} x^{2} - 1}\,{d x} + \frac{32 \,{\left ({\left (\log \left (c x + 1\right ) - \log \left (-c x + 1\right )\right )} \arctan \left (\sqrt{c x + 1}, \sqrt{-c x + 1}\right ) + c \int \frac{e^{\left (\frac{1}{2} \, \log \left (c x + 1\right ) + \frac{1}{2} \, \log \left (-c x + 1\right )\right )} \log \left (c x + 1\right ) - e^{\left (\frac{1}{2} \, \log \left (c x + 1\right ) + \frac{1}{2} \, \log \left (-c x + 1\right )\right )} \log \left (-c x + 1\right )}{{\left (c^{2} x^{2} - 1\right )}{\left (c x + 1\right )} -{\left (c^{2} x^{2} - 1\right )}{\left (c x - 1\right )}}\,{d x}\right )} a b}{c}\right )} c}{32 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, algorithm="maxima")

[Out]

1/2*a^2*(log(c*x + 1)/c - log(c*x - 1)/c) - 1/32*(b^2*log(2)^2*log(c*x + 1) - b^2*log(2)^2*log(-c*x + 1) - 4*(
b^2*log(c*x + 1) - b^2*log(-c*x + 1))*arctan2(sqrt(c*x + 1), sqrt(-c*x + 1))^2 - (b^2*(log(c*x + 1)/c - log(c*
x - 1)/c)*log(2)^2 + 64*b^2*integrate(1/16*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan(sqrt(c*x + 1)/sqrt(-c*x + 1))*l
og(c*x + 1)/(c^2*x^2 - 1), x) - 64*b^2*integrate(1/16*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan(sqrt(c*x + 1)/sqrt(-
c*x + 1))*log(-c*x + 1)/(c^2*x^2 - 1), x) - 384*b^2*integrate(1/16*arctan(sqrt(c*x + 1)/sqrt(-c*x + 1))^2/(c^2
*x^2 - 1), x) - 1024*a*b*integrate(1/16*arctan(sqrt(c*x + 1)/sqrt(-c*x + 1))/(c^2*x^2 - 1), x))*c)/c

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{b^{2} \operatorname{arccot}\left (\frac{\sqrt{-c x + 1}}{\sqrt{c x + 1}}\right )^{2} + 2 \, a b \operatorname{arccot}\left (\frac{\sqrt{-c x + 1}}{\sqrt{c x + 1}}\right ) + a^{2}}{c^{2} x^{2} - 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-(b^2*arccot(sqrt(-c*x + 1)/sqrt(c*x + 1))^2 + 2*a*b*arccot(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a^2)/(c^2
*x^2 - 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{a^{2}}{c^{2} x^{2} - 1}\, dx - \int \frac{b^{2} \operatorname{acot}^{2}{\left (\frac{\sqrt{- c x + 1}}{\sqrt{c x + 1}} \right )}}{c^{2} x^{2} - 1}\, dx - \int \frac{2 a b \operatorname{acot}{\left (\frac{\sqrt{- c x + 1}}{\sqrt{c x + 1}} \right )}}{c^{2} x^{2} - 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acot((-c*x+1)**(1/2)/(c*x+1)**(1/2)))**2/(-c**2*x**2+1),x)

[Out]

-Integral(a**2/(c**2*x**2 - 1), x) - Integral(b**2*acot(sqrt(-c*x + 1)/sqrt(c*x + 1))**2/(c**2*x**2 - 1), x) -
 Integral(2*a*b*acot(sqrt(-c*x + 1)/sqrt(c*x + 1))/(c**2*x**2 - 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{{\left (b \operatorname{arccot}\left (\frac{\sqrt{-c x + 1}}{\sqrt{c x + 1}}\right ) + a\right )}^{2}}{c^{2} x^{2} - 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccot((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, algorithm="giac")

[Out]

integrate(-(b*arccot(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a)^2/(c^2*x^2 - 1), x)