3.114 \(\int \frac{\cot ^{-1}(a+b x)}{\sqrt{1+a^2+2 a b x+b^2 x^2}} \, dx\)

Optimal. Leaf size=132 \[ -\frac{i \text{PolyLog}\left (2,-\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}+\frac{i \text{PolyLog}\left (2,\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}-\frac{2 i \tan ^{-1}\left (\frac{\sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right ) \cot ^{-1}(a+b x)}{b} \]

[Out]

((-2*I)*ArcCot[a + b*x]*ArcTan[Sqrt[1 + I*(a + b*x)]/Sqrt[1 - I*(a + b*x)]])/b - (I*PolyLog[2, ((-I)*Sqrt[1 +
I*(a + b*x)])/Sqrt[1 - I*(a + b*x)]])/b + (I*PolyLog[2, (I*Sqrt[1 + I*(a + b*x)])/Sqrt[1 - I*(a + b*x)]])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0964322, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {5056, 4887} \[ -\frac{i \text{PolyLog}\left (2,-\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}+\frac{i \text{PolyLog}\left (2,\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}-\frac{2 i \tan ^{-1}\left (\frac{\sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right ) \cot ^{-1}(a+b x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[ArcCot[a + b*x]/Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

((-2*I)*ArcCot[a + b*x]*ArcTan[Sqrt[1 + I*(a + b*x)]/Sqrt[1 - I*(a + b*x)]])/b - (I*PolyLog[2, ((-I)*Sqrt[1 +
I*(a + b*x)])/Sqrt[1 - I*(a + b*x)]])/b + (I*PolyLog[2, (I*Sqrt[1 + I*(a + b*x)])/Sqrt[1 - I*(a + b*x)]])/b

Rule 5056

Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(q_.), x_Symbol] :> Di
st[1/d, Subst[Int[(C/d^2 + (C*x^2)/d^2)^q*(a + b*ArcCot[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A, B,
 C, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]

Rule 4887

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*I*(a + b*ArcCot[c*x])*
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x] + (-Simp[(I*b*PolyLog[2, -((I*Sqrt[1 + I*c*x])/Sqrt[1
 - I*c*x])])/(c*Sqrt[d]), x] + Simp[(I*b*PolyLog[2, (I*Sqrt[1 + I*c*x])/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x]) /;
FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]

Rubi steps

\begin{align*} \int \frac{\cot ^{-1}(a+b x)}{\sqrt{1+a^2+2 a b x+b^2 x^2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cot ^{-1}(x)}{\sqrt{1+x^2}} \, dx,x,a+b x\right )}{b}\\ &=-\frac{2 i \cot ^{-1}(a+b x) \tan ^{-1}\left (\frac{\sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}-\frac{i \text{Li}_2\left (-\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}+\frac{i \text{Li}_2\left (\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.143723, size = 127, normalized size = 0.96 \[ -\frac{\sqrt{a^2+2 a b x+b^2 x^2+1} \left (i \text{PolyLog}\left (2,-e^{i \cot ^{-1}(a+b x)}\right )-i \text{PolyLog}\left (2,e^{i \cot ^{-1}(a+b x)}\right )+\cot ^{-1}(a+b x) \left (\log \left (1-e^{i \cot ^{-1}(a+b x)}\right )-\log \left (1+e^{i \cot ^{-1}(a+b x)}\right )\right )\right )}{b (a+b x) \sqrt{\frac{1}{(a+b x)^2}+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcCot[a + b*x]/Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

-((Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2]*(ArcCot[a + b*x]*(Log[1 - E^(I*ArcCot[a + b*x])] - Log[1 + E^(I*ArcCot[a
+ b*x])]) + I*PolyLog[2, -E^(I*ArcCot[a + b*x])] - I*PolyLog[2, E^(I*ArcCot[a + b*x])]))/(b*(a + b*x)*Sqrt[1 +
 (a + b*x)^(-2)]))

________________________________________________________________________________________

Maple [A]  time = 0.429, size = 123, normalized size = 0.9 \begin{align*} -{\frac{{\rm arccot} \left (bx+a\right )}{b}\ln \left ( 1-{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) }+{\frac{{\rm arccot} \left (bx+a\right )}{b}\ln \left ( 1+{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) }-{\frac{i}{b}{\it polylog} \left ( 2,-{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) }+{\frac{i}{b}{\it polylog} \left ( 2,{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x)

[Out]

-1/b*arccot(b*x+a)*ln(1-(I+a+b*x)/(1+(b*x+a)^2)^(1/2))+1/b*arccot(b*x+a)*ln(1+(I+a+b*x)/(1+(b*x+a)^2)^(1/2))-I
/b*polylog(2,-(I+a+b*x)/(1+(b*x+a)^2)^(1/2))+I/b*polylog(2,(I+a+b*x)/(1+(b*x+a)^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\operatorname{arccot}\left (b x + a\right )}{\sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(arccot(b*x + a)/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{acot}{\left (a + b x \right )}}{\sqrt{a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acot(b*x+a)/(b**2*x**2+2*a*b*x+a**2+1)**(1/2),x)

[Out]

Integral(acot(a + b*x)/sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{arccot}\left (b x + a\right )}{\sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(arccot(b*x + a)/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1), x)