3.27 \(\int \frac{\tan ^{-1}(\frac{\sqrt{-e} x}{\sqrt{d+e x^2}})}{\sqrt{x}} \, dx\)

Optimal. Leaf size=260 \[ -\frac{2 \sqrt [4]{d} \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right ),\frac{1}{2}\right )}{e^{3/4} \sqrt{d+e x^2}}+\frac{4 \sqrt [4]{d} \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right )|\frac{1}{2}\right )}{e^{3/4} \sqrt{d+e x^2}}-\frac{4 \sqrt{-e} \sqrt{x} \sqrt{d+e x^2}}{\sqrt{e} \left (\sqrt{d}+\sqrt{e} x\right )}+2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right ) \]

[Out]

(-4*Sqrt[-e]*Sqrt[x]*Sqrt[d + e*x^2])/(Sqrt[e]*(Sqrt[d] + Sqrt[e]*x)) + 2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d +
 e*x^2]] + (4*d^(1/4)*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticE[2*Arc
Tan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(3/4)*Sqrt[d + e*x^2]) - (2*d^(1/4)*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sq
rt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(3/4)*Sqrt[d +
 e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.138935, antiderivative size = 260, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {5151, 329, 305, 220, 1196} \[ -\frac{2 \sqrt [4]{d} \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right )|\frac{1}{2}\right )}{e^{3/4} \sqrt{d+e x^2}}+\frac{4 \sqrt [4]{d} \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right )|\frac{1}{2}\right )}{e^{3/4} \sqrt{d+e x^2}}-\frac{4 \sqrt{-e} \sqrt{x} \sqrt{d+e x^2}}{\sqrt{e} \left (\sqrt{d}+\sqrt{e} x\right )}+2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/Sqrt[x],x]

[Out]

(-4*Sqrt[-e]*Sqrt[x]*Sqrt[d + e*x^2])/(Sqrt[e]*(Sqrt[d] + Sqrt[e]*x)) + 2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d +
 e*x^2]] + (4*d^(1/4)*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticE[2*Arc
Tan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(3/4)*Sqrt[d + e*x^2]) - (2*d^(1/4)*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sq
rt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(3/4)*Sqrt[d +
 e*x^2])

Rule 5151

Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*ArcTa
n[(c*x)/Sqrt[a + b*x^2]])/(d*(m + 1)), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}} \, dx &=2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )-\left (2 \sqrt{-e}\right ) \int \frac{\sqrt{x}}{\sqrt{d+e x^2}} \, dx\\ &=2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )-\left (4 \sqrt{-e}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{d+e x^4}} \, dx,x,\sqrt{x}\right )\\ &=2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )-\frac{\left (4 \sqrt{d} \sqrt{-e}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{d+e x^4}} \, dx,x,\sqrt{x}\right )}{\sqrt{e}}+\frac{\left (4 \sqrt{d} \sqrt{-e}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{e} x^2}{\sqrt{d}}}{\sqrt{d+e x^4}} \, dx,x,\sqrt{x}\right )}{\sqrt{e}}\\ &=-\frac{4 \sqrt{-e} \sqrt{x} \sqrt{d+e x^2}}{\sqrt{e} \left (\sqrt{d}+\sqrt{e} x\right )}+2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )+\frac{4 \sqrt [4]{d} \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right )|\frac{1}{2}\right )}{e^{3/4} \sqrt{d+e x^2}}-\frac{2 \sqrt [4]{d} \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right )|\frac{1}{2}\right )}{e^{3/4} \sqrt{d+e x^2}}\\ \end{align*}

Mathematica [C]  time = 0.106167, size = 89, normalized size = 0.34 \[ 2 \sqrt{x} \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )-\frac{4 \sqrt{-e} x^{3/2} \sqrt{\frac{e x^2}{d}+1} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{e x^2}{d}\right )}{3 \sqrt{d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/Sqrt[x],x]

[Out]

2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]] - (4*Sqrt[-e]*x^(3/2)*Sqrt[1 + (e*x^2)/d]*Hypergeometric2F1[1/2
, 3/4, 7/4, -((e*x^2)/d)])/(3*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.283, size = 0, normalized size = 0. \begin{align*} \int{\arctan \left ({x\sqrt{-e}{\frac{1}{\sqrt{e{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{x}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x)

[Out]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -2 \, d \sqrt{-e} \int \frac{\sqrt{e x^{2} + d} x}{{\left (e x^{2} + d\right )} e^{\left (\log \left (e x^{2} + d\right ) + \frac{1}{2} \, \log \left (x\right )\right )} -{\left (e^{2} x^{4} + d e x^{2}\right )} \sqrt{x}}\,{d x} + 2 \, \sqrt{x} \arctan \left (\sqrt{-e} x, \sqrt{e x^{2} + d}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="maxima")

[Out]

-2*d*sqrt(-e)*integrate(sqrt(e*x^2 + d)*x/((e*x^2 + d)*e^(log(e*x^2 + d) + 1/2*log(x)) - (e^2*x^4 + d*e*x^2)*s
qrt(x)), x) + 2*sqrt(x)*arctan2(sqrt(-e)*x, sqrt(e*x^2 + d))

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\arctan \left (\frac{\sqrt{-e} x}{\sqrt{e x^{2} + d}}\right )}{\sqrt{x}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="fricas")

[Out]

integral(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/sqrt(x), x)

________________________________________________________________________________________

Sympy [C]  time = 7.20916, size = 71, normalized size = 0.27 \begin{align*} 2 \sqrt{x} \operatorname{atan}{\left (\frac{x \sqrt{- e}}{\sqrt{d + e x^{2}}} \right )} - \frac{x^{\frac{3}{2}} \sqrt{- e} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{e x^{2} e^{i \pi }}{d}} \right )}}{\sqrt{d} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2))/x**(1/2),x)

[Out]

2*sqrt(x)*atan(x*sqrt(-e)/sqrt(d + e*x**2)) - x**(3/2)*sqrt(-e)*gamma(3/4)*hyper((1/2, 3/4), (7/4,), e*x**2*ex
p_polar(I*pi)/d)/(sqrt(d)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\arctan \left (\frac{\sqrt{-e} x}{\sqrt{e x^{2} + d}}\right )}{\sqrt{x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="giac")

[Out]

integrate(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/sqrt(x), x)