3.21 \(\int \frac{\tan ^{-1}(\frac{\sqrt{-e} x}{\sqrt{d+e x^2}})}{x^{3/2}} \, dx\)

Optimal. Leaf size=122 \[ \frac{2 \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right ),\frac{1}{2}\right )}{\sqrt [4]{d} \sqrt [4]{e} \sqrt{d+e x^2}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}} \]

[Out]

(-2*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + (2*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d
] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(d^(1/4)*e^(1/4)*Sqrt[d + e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0607988, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {5151, 329, 220} \[ \frac{2 \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right ),\frac{1}{2}\right )}{\sqrt [4]{d} \sqrt [4]{e} \sqrt{d+e x^2}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}} \]

Antiderivative was successfully verified.

[In]

Int[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/x^(3/2),x]

[Out]

(-2*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + (2*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d
] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(d^(1/4)*e^(1/4)*Sqrt[d + e*x^2])

Rule 5151

Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*ArcTa
n[(c*x)/Sqrt[a + b*x^2]])/(d*(m + 1)), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{x^{3/2}} \, dx &=-\frac{2 \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}}+\left (2 \sqrt{-e}\right ) \int \frac{1}{\sqrt{x} \sqrt{d+e x^2}} \, dx\\ &=-\frac{2 \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}}+\left (4 \sqrt{-e}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{d+e x^4}} \, dx,x,\sqrt{x}\right )\\ &=-\frac{2 \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}}+\frac{2 \sqrt{-e} \left (\sqrt{d}+\sqrt{e} x\right ) \sqrt{\frac{d+e x^2}{\left (\sqrt{d}+\sqrt{e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{e} \sqrt{x}}{\sqrt [4]{d}}\right )|\frac{1}{2}\right )}{\sqrt [4]{d} \sqrt [4]{e} \sqrt{d+e x^2}}\\ \end{align*}

Mathematica [C]  time = 0.121743, size = 115, normalized size = 0.94 \[ -\frac{2 \tan ^{-1}\left (\frac{\sqrt{-e} x}{\sqrt{d+e x^2}}\right )}{\sqrt{x}}+\frac{4 i \sqrt{-e} x \sqrt{\frac{d}{e x^2}+1} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{i \sqrt{d}}{\sqrt{e}}}}{\sqrt{x}}\right ),-1\right )}{\sqrt{\frac{i \sqrt{d}}{\sqrt{e}}} \sqrt{d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/x^(3/2),x]

[Out]

(-2*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + ((4*I)*Sqrt[-e]*Sqrt[1 + d/(e*x^2)]*x*EllipticF[I*ArcSinh[
Sqrt[(I*Sqrt[d])/Sqrt[e]]/Sqrt[x]], -1])/(Sqrt[(I*Sqrt[d])/Sqrt[e]]*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.293, size = 0, normalized size = 0. \begin{align*} \int{\arctan \left ({x\sqrt{-e}{\frac{1}{\sqrt{e{x}^{2}+d}}}} \right ){x}^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x)

[Out]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{2 \,{\left (-d \sqrt{-e} \sqrt{x} \int -\frac{\sqrt{e x^{2} + d} x}{{\left (e x^{2} + d\right )}^{2} x^{\frac{3}{2}} -{\left (e^{2} x^{4} + d e x^{2}\right )} x^{\frac{3}{2}}}\,{d x} - \arctan \left (\sqrt{-e} x, \sqrt{e x^{2} + d}\right )\right )}}{\sqrt{x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="maxima")

[Out]

2*(d*sqrt(-e)*sqrt(x)*integrate(-sqrt(e*x^2 + d)*x/((e^2*x^4 + d*e*x^2)*x^(3/2) - (e*x^2 + d)*e^(log(e*x^2 + d
) + 3/2*log(x))), x) - arctan2(sqrt(-e)*x, sqrt(e*x^2 + d)))/sqrt(x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\arctan \left (\frac{\sqrt{-e} x}{\sqrt{e x^{2} + d}}\right )}{x^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="fricas")

[Out]

integral(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/x^(3/2), x)

________________________________________________________________________________________

Sympy [C]  time = 5.20209, size = 71, normalized size = 0.58 \begin{align*} - \frac{2 \operatorname{atan}{\left (\frac{x \sqrt{- e}}{\sqrt{d + e x^{2}}} \right )}}{\sqrt{x}} + \frac{\sqrt{x} \sqrt{- e} \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{e x^{2} e^{i \pi }}{d}} \right )}}{\sqrt{d} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2))/x**(3/2),x)

[Out]

-2*atan(x*sqrt(-e)/sqrt(d + e*x**2))/sqrt(x) + sqrt(x)*sqrt(-e)*gamma(1/4)*hyper((1/4, 1/2), (5/4,), e*x**2*ex
p_polar(I*pi)/d)/(sqrt(d)*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\arctan \left (\frac{\sqrt{-e} x}{\sqrt{e x^{2} + d}}\right )}{x^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="giac")

[Out]

integrate(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/x^(3/2), x)