3.143 \(\int \frac{1}{\sqrt{a+b x^2} \tan ^{-1}(\frac{e x}{\sqrt{-\frac{a e^2}{b}-e^2 x^2}})} \, dx\)

Optimal. Leaf size=64 \[ \frac{\sqrt{e^2 \left (-x^2\right )-\frac{a e^2}{b}} \log \left (\tan ^{-1}\left (\frac{e x}{\sqrt{e^2 \left (-x^2\right )-\frac{a e^2}{b}}}\right )\right )}{e \sqrt{a+b x^2}} \]

[Out]

(Sqrt[-((a*e^2)/b) - e^2*x^2]*Log[ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2]]])/(e*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.107628, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.05, Rules used = {5157, 5153} \[ \frac{\sqrt{e^2 \left (-x^2\right )-\frac{a e^2}{b}} \log \left (\tan ^{-1}\left (\frac{e x}{\sqrt{e^2 \left (-x^2\right )-\frac{a e^2}{b}}}\right )\right )}{e \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x^2]*ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2]]),x]

[Out]

(Sqrt[-((a*e^2)/b) - e^2*x^2]*Log[ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2]]])/(e*Sqrt[a + b*x^2])

Rule 5157

Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(d_.) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a
 + b*x^2]/Sqrt[d + e*x^2], Int[ArcTan[(c*x)/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d, e
, m}, x] && EqQ[b + c^2, 0] && EqQ[b*d - a*e, 0]

Rule 5153

Int[1/(ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*Sqrt[(a_.) + (b_.)*(x_)^2]), x_Symbol] :> Simp[(1*Log[A
rcTan[(c*x)/Sqrt[a + b*x^2]]])/c, x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+b x^2} \tan ^{-1}\left (\frac{e x}{\sqrt{-\frac{a e^2}{b}-e^2 x^2}}\right )} \, dx &=\frac{\sqrt{-\frac{a e^2}{b}-e^2 x^2} \int \frac{1}{\sqrt{-\frac{a e^2}{b}-e^2 x^2} \tan ^{-1}\left (\frac{e x}{\sqrt{-\frac{a e^2}{b}-e^2 x^2}}\right )} \, dx}{\sqrt{a+b x^2}}\\ &=\frac{\sqrt{-\frac{a e^2}{b}-e^2 x^2} \log \left (\tan ^{-1}\left (\frac{e x}{\sqrt{-\frac{a e^2}{b}-e^2 x^2}}\right )\right )}{e \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [A]  time = 0.104103, size = 58, normalized size = 0.91 \[ \frac{\sqrt{-\frac{e^2 \left (a+b x^2\right )}{b}} \log \left (\tan ^{-1}\left (\frac{e x}{\sqrt{-\frac{e^2 \left (a+b x^2\right )}{b}}}\right )\right )}{e \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*x^2]*ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2]]),x]

[Out]

(Sqrt[-((e^2*(a + b*x^2))/b)]*Log[ArcTan[(e*x)/Sqrt[-((e^2*(a + b*x^2))/b)]]])/(e*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.715, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \arctan \left ({ex{\frac{1}{\sqrt{-{\frac{a{e}^{2}}{b}}-{e}^{2}{x}^{2}}}}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{b{x}^{2}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2))/(b*x^2+a)^(1/2),x)

[Out]

int(1/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2))/(b*x^2+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{2} + a} \arctan \left (\frac{e x}{\sqrt{-e^{2} x^{2} - \frac{a e^{2}}{b}}}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2))/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*arctan(e*x/sqrt(-e^2*x^2 - a*e^2/b))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.76519, size = 170, normalized size = 2.66 \begin{align*} \frac{\sqrt{b x^{2} + a} \sqrt{-\frac{b e^{2} x^{2} + a e^{2}}{b}} \log \left (2 \, \arctan \left (\frac{b x \sqrt{-\frac{b e^{2} x^{2} + a e^{2}}{b}}}{b e x^{2} + a e}\right )\right )}{b e x^{2} + a e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2))/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

sqrt(b*x^2 + a)*sqrt(-(b*e^2*x^2 + a*e^2)/b)*log(2*arctan(b*x*sqrt(-(b*e^2*x^2 + a*e^2)/b)/(b*e*x^2 + a*e)))/(
b*e*x^2 + a*e)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + b x^{2}} \operatorname{atan}{\left (\frac{e x}{\sqrt{- \frac{a e^{2}}{b} - e^{2} x^{2}}} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/atan(e*x/(-a*e**2/b-e**2*x**2)**(1/2))/(b*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*x**2)*atan(e*x/sqrt(-a*e**2/b - e**2*x**2))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{2} + a} \arctan \left (\frac{e x}{\sqrt{-e^{2} x^{2} - \frac{a e^{2}}{b}}}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2))/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^2 + a)*arctan(e*x/sqrt(-e^2*x^2 - a*e^2/b))), x)