3.370 \(\int \frac{e^{n \tan ^{-1}(a x)} x^m}{(c+a^2 c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=82 \[ \frac{\sqrt{a^2 x^2+1} x^{m+1} F_1\left (m+1;\frac{1}{2} (5-i n),\frac{1}{2} (i n+5);m+2;i a x,-i a x\right )}{c^2 (m+1) \sqrt{a^2 c x^2+c}} \]

[Out]

(x^(1 + m)*Sqrt[1 + a^2*x^2]*AppellF1[1 + m, (5 - I*n)/2, (5 + I*n)/2, 2 + m, I*a*x, (-I)*a*x])/(c^2*(1 + m)*S
qrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.214208, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {5085, 5082, 133} \[ \frac{\sqrt{a^2 x^2+1} x^{m+1} F_1\left (m+1;\frac{1}{2} (5-i n),\frac{1}{2} (i n+5);m+2;i a x,-i a x\right )}{c^2 (m+1) \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(n*ArcTan[a*x])*x^m)/(c + a^2*c*x^2)^(5/2),x]

[Out]

(x^(1 + m)*Sqrt[1 + a^2*x^2]*AppellF1[1 + m, (5 - I*n)/2, (5 + I*n)/2, 2 + m, I*a*x, (-I)*a*x])/(c^2*(1 + m)*S
qrt[c + a^2*c*x^2])

Rule 5085

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d
*x^2)^FracPart[p])/(1 + a^2*x^2)^FracPart[p], Int[x^m*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c
, d, m, n, p}, x] && EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 5082

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 - I
*a*x)^(p + (I*n)/2)*(1 + I*a*x)^(p - (I*n)/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Int
egerQ[p] || GtQ[c, 0])

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rubi steps

\begin{align*} \int \frac{e^{n \tan ^{-1}(a x)} x^m}{\left (c+a^2 c x^2\right )^{5/2}} \, dx &=\frac{\sqrt{1+a^2 x^2} \int \frac{e^{n \tan ^{-1}(a x)} x^m}{\left (1+a^2 x^2\right )^{5/2}} \, dx}{c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{\sqrt{1+a^2 x^2} \int x^m (1-i a x)^{-\frac{5}{2}+\frac{i n}{2}} (1+i a x)^{-\frac{5}{2}-\frac{i n}{2}} \, dx}{c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{x^{1+m} \sqrt{1+a^2 x^2} F_1\left (1+m;\frac{1}{2} (5-i n),\frac{1}{2} (5+i n);2+m;i a x,-i a x\right )}{c^2 (1+m) \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [F]  time = 0.570156, size = 0, normalized size = 0. \[ \int \frac{e^{n \tan ^{-1}(a x)} x^m}{\left (c+a^2 c x^2\right )^{5/2}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(E^(n*ArcTan[a*x])*x^m)/(c + a^2*c*x^2)^(5/2),x]

[Out]

Integrate[(E^(n*ArcTan[a*x])*x^m)/(c + a^2*c*x^2)^(5/2), x]

________________________________________________________________________________________

Maple [F]  time = 0.317, size = 0, normalized size = 0. \begin{align*} \int{{{\rm e}^{n\arctan \left ( ax \right ) }}{x}^{m} \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(5/2),x)

[Out]

int(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(5/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate(x^m*e^(n*arctan(a*x))/(a^2*c*x^2 + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a^{2} c x^{2} + c} x^{m} e^{\left (n \arctan \left (a x\right )\right )}}{a^{6} c^{3} x^{6} + 3 \, a^{4} c^{3} x^{4} + 3 \, a^{2} c^{3} x^{2} + c^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*x^m*e^(n*arctan(a*x))/(a^6*c^3*x^6 + 3*a^4*c^3*x^4 + 3*a^2*c^3*x^2 + c^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))*x**m/(a**2*c*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate(x^m*e^(n*arctan(a*x))/(a^2*c*x^2 + c)^(5/2), x)