3.367 \(\int \frac{e^{n \tan ^{-1}(a x)} x^m}{(c+a^2 c x^2)^3} \, dx\)

Optimal. Leaf size=51 \[ \frac{x^{m+1} F_1\left (m+1;3-\frac{i n}{2},\frac{i n}{2}+3;m+2;i a x,-i a x\right )}{c^3 (m+1)} \]

[Out]

(x^(1 + m)*AppellF1[1 + m, 3 - (I/2)*n, 3 + (I/2)*n, 2 + m, I*a*x, (-I)*a*x])/(c^3*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.0891178, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {5082, 133} \[ \frac{x^{m+1} F_1\left (m+1;3-\frac{i n}{2},\frac{i n}{2}+3;m+2;i a x,-i a x\right )}{c^3 (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[(E^(n*ArcTan[a*x])*x^m)/(c + a^2*c*x^2)^3,x]

[Out]

(x^(1 + m)*AppellF1[1 + m, 3 - (I/2)*n, 3 + (I/2)*n, 2 + m, I*a*x, (-I)*a*x])/(c^3*(1 + m))

Rule 5082

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 - I
*a*x)^(p + (I*n)/2)*(1 + I*a*x)^(p - (I*n)/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Int
egerQ[p] || GtQ[c, 0])

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rubi steps

\begin{align*} \int \frac{e^{n \tan ^{-1}(a x)} x^m}{\left (c+a^2 c x^2\right )^3} \, dx &=\frac{\int x^m (1-i a x)^{-3+\frac{i n}{2}} (1+i a x)^{-3-\frac{i n}{2}} \, dx}{c^3}\\ &=\frac{x^{1+m} F_1\left (1+m;3-\frac{i n}{2},3+\frac{i n}{2};2+m;i a x,-i a x\right )}{c^3 (1+m)}\\ \end{align*}

Mathematica [F]  time = 0.678413, size = 0, normalized size = 0. \[ \int \frac{e^{n \tan ^{-1}(a x)} x^m}{\left (c+a^2 c x^2\right )^3} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(E^(n*ArcTan[a*x])*x^m)/(c + a^2*c*x^2)^3,x]

[Out]

Integrate[(E^(n*ArcTan[a*x])*x^m)/(c + a^2*c*x^2)^3, x]

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{\frac{{{\rm e}^{n\arctan \left ( ax \right ) }}{x}^{m}}{ \left ({a}^{2}c{x}^{2}+c \right ) ^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^3,x)

[Out]

int(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^3,x, algorithm="maxima")

[Out]

integrate(x^m*e^(n*arctan(a*x))/(a^2*c*x^2 + c)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{m} e^{\left (n \arctan \left (a x\right )\right )}}{a^{6} c^{3} x^{6} + 3 \, a^{4} c^{3} x^{4} + 3 \, a^{2} c^{3} x^{2} + c^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^3,x, algorithm="fricas")

[Out]

integral(x^m*e^(n*arctan(a*x))/(a^6*c^3*x^6 + 3*a^4*c^3*x^4 + 3*a^2*c^3*x^2 + c^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))*x**m/(a**2*c*x**2+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^3,x, algorithm="giac")

[Out]

integrate(x^m*e^(n*arctan(a*x))/(a^2*c*x^2 + c)^3, x)