3.349 \(\int e^{n \tan ^{-1}(a x)} \sqrt{c+a^2 c x^2} \, dx\)

Optimal. Leaf size=120 \[ -\frac{2^{\frac{3}{2}-\frac{i n}{2}} \sqrt{a^2 c x^2+c} (1-i a x)^{\frac{1}{2} (3+i n)} \, _2F_1\left (\frac{1}{2} (i n-1),\frac{1}{2} (i n+3);\frac{1}{2} (i n+5);\frac{1}{2} (1-i a x)\right )}{a (-n+3 i) \sqrt{a^2 x^2+1}} \]

[Out]

-((2^(3/2 - (I/2)*n)*(1 - I*a*x)^((3 + I*n)/2)*Sqrt[c + a^2*c*x^2]*Hypergeometric2F1[(-1 + I*n)/2, (3 + I*n)/2
, (5 + I*n)/2, (1 - I*a*x)/2])/(a*(3*I - n)*Sqrt[1 + a^2*x^2]))

________________________________________________________________________________________

Rubi [A]  time = 0.0966217, antiderivative size = 120, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {5076, 5073, 69} \[ -\frac{2^{\frac{3}{2}-\frac{i n}{2}} \sqrt{a^2 c x^2+c} (1-i a x)^{\frac{1}{2} (3+i n)} \, _2F_1\left (\frac{1}{2} (i n-1),\frac{1}{2} (i n+3);\frac{1}{2} (i n+5);\frac{1}{2} (1-i a x)\right )}{a (-n+3 i) \sqrt{a^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTan[a*x])*Sqrt[c + a^2*c*x^2],x]

[Out]

-((2^(3/2 - (I/2)*n)*(1 - I*a*x)^((3 + I*n)/2)*Sqrt[c + a^2*c*x^2]*Hypergeometric2F1[(-1 + I*n)/2, (3 + I*n)/2
, (5 + I*n)/2, (1 - I*a*x)/2])/(a*(3*I - n)*Sqrt[1 + a^2*x^2]))

Rule 5076

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^FracP
art[p])/(1 + a^2*x^2)^FracPart[p], Int[(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 5073

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - I*a*x)^(p + (I*n
)/2)*(1 + I*a*x)^(p - (I*n)/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c,
 0])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int e^{n \tan ^{-1}(a x)} \sqrt{c+a^2 c x^2} \, dx &=\frac{\sqrt{c+a^2 c x^2} \int e^{n \tan ^{-1}(a x)} \sqrt{1+a^2 x^2} \, dx}{\sqrt{1+a^2 x^2}}\\ &=\frac{\sqrt{c+a^2 c x^2} \int (1-i a x)^{\frac{1}{2}+\frac{i n}{2}} (1+i a x)^{\frac{1}{2}-\frac{i n}{2}} \, dx}{\sqrt{1+a^2 x^2}}\\ &=-\frac{2^{\frac{3}{2}-\frac{i n}{2}} (1-i a x)^{\frac{1}{2} (3+i n)} \sqrt{c+a^2 c x^2} \, _2F_1\left (\frac{1}{2} (-1+i n),\frac{1}{2} (3+i n);\frac{1}{2} (5+i n);\frac{1}{2} (1-i a x)\right )}{a (3 i-n) \sqrt{1+a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.052151, size = 117, normalized size = 0.98 \[ \frac{2^{\frac{3}{2}-\frac{i n}{2}} \sqrt{a^2 c x^2+c} (1-i a x)^{\frac{3}{2}+\frac{i n}{2}} \, _2F_1\left (\frac{1}{2} (i n+3),\frac{1}{2} i (n+i);\frac{1}{2} (i n+5);\frac{1}{2} (1-i a x)\right )}{a (n-3 i) \sqrt{a^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTan[a*x])*Sqrt[c + a^2*c*x^2],x]

[Out]

(2^(3/2 - (I/2)*n)*(1 - I*a*x)^(3/2 + (I/2)*n)*Sqrt[c + a^2*c*x^2]*Hypergeometric2F1[(3 + I*n)/2, (I/2)*(I + n
), (5 + I*n)/2, (1 - I*a*x)/2])/(a*(-3*I + n)*Sqrt[1 + a^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.284, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{n\arctan \left ( ax \right ) }}\sqrt{{a}^{2}c{x}^{2}+c}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))*(a^2*c*x^2+c)^(1/2),x)

[Out]

int(exp(n*arctan(a*x))*(a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a^{2} c x^{2} + c} e^{\left (n \arctan \left (a x\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a^2*c*x^2 + c)*e^(n*arctan(a*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{a^{2} c x^{2} + c} e^{\left (n \arctan \left (a x\right )\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*e^(n*arctan(a*x)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c \left (a^{2} x^{2} + 1\right )} e^{n \operatorname{atan}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))*(a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(sqrt(c*(a**2*x**2 + 1))*exp(n*atan(a*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*(a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError