3.307 \(\int \frac{e^{-2 i \tan ^{-1}(a x)}}{\sqrt{1+a^2 x^2}} \, dx\)

Optimal. Leaf size=41 \[ -\frac{\sinh ^{-1}(a x)}{a}+\frac{2 i \sqrt{1-i a x}}{a \sqrt{1+i a x}} \]

[Out]

((2*I)*Sqrt[1 - I*a*x])/(a*Sqrt[1 + I*a*x]) - ArcSinh[a*x]/a

________________________________________________________________________________________

Rubi [A]  time = 0.0352676, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {5073, 47, 41, 215} \[ -\frac{\sinh ^{-1}(a x)}{a}+\frac{2 i \sqrt{1-i a x}}{a \sqrt{1+i a x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^((2*I)*ArcTan[a*x])*Sqrt[1 + a^2*x^2]),x]

[Out]

((2*I)*Sqrt[1 - I*a*x])/(a*Sqrt[1 + I*a*x]) - ArcSinh[a*x]/a

Rule 5073

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - I*a*x)^(p + (I*n
)/2)*(1 + I*a*x)^(p - (I*n)/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c,
 0])

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{e^{-2 i \tan ^{-1}(a x)}}{\sqrt{1+a^2 x^2}} \, dx &=\int \frac{\sqrt{1-i a x}}{(1+i a x)^{3/2}} \, dx\\ &=\frac{2 i \sqrt{1-i a x}}{a \sqrt{1+i a x}}-\int \frac{1}{\sqrt{1-i a x} \sqrt{1+i a x}} \, dx\\ &=\frac{2 i \sqrt{1-i a x}}{a \sqrt{1+i a x}}-\int \frac{1}{\sqrt{1+a^2 x^2}} \, dx\\ &=\frac{2 i \sqrt{1-i a x}}{a \sqrt{1+i a x}}-\frac{\sinh ^{-1}(a x)}{a}\\ \end{align*}

Mathematica [A]  time = 0.0577804, size = 56, normalized size = 1.37 \[ \frac{2 \left (\sqrt{a^2 x^2+1}+(-1-i a x) \sin ^{-1}\left (\frac{\sqrt{1-i a x}}{\sqrt{2}}\right )\right )}{a (a x-i)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^((2*I)*ArcTan[a*x])*Sqrt[1 + a^2*x^2]),x]

[Out]

(2*(Sqrt[1 + a^2*x^2] + (-1 - I*a*x)*ArcSin[Sqrt[1 - I*a*x]/Sqrt[2]]))/(a*(-I + a*x))

________________________________________________________________________________________

Maple [B]  time = 0.068, size = 143, normalized size = 3.5 \begin{align*}{\frac{-i}{{a}^{3}} \left ({a}^{2} \left ( x-{\frac{i}{a}} \right ) ^{2}+2\,ia \left ( x-{\frac{i}{a}} \right ) \right ) ^{{\frac{3}{2}}} \left ( x-{\frac{i}{a}} \right ) ^{-2}}+{\frac{i}{a}\sqrt{{a}^{2} \left ( x-{\frac{i}{a}} \right ) ^{2}+2\,ia \left ( x-{\frac{i}{a}} \right ) }}-{\ln \left ({ \left ( ia+{a}^{2} \left ( x-{\frac{i}{a}} \right ) \right ){\frac{1}{\sqrt{{a}^{2}}}}}+\sqrt{{a}^{2} \left ( x-{\frac{i}{a}} \right ) ^{2}+2\,ia \left ( x-{\frac{i}{a}} \right ) } \right ){\frac{1}{\sqrt{{a}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+I*a*x)^2*(a^2*x^2+1)^(1/2),x)

[Out]

-I/a^3/(x-I/a)^2*(a^2*(x-I/a)^2+2*I*a*(x-I/a))^(3/2)+I/a*(a^2*(x-I/a)^2+2*I*a*(x-I/a))^(1/2)-ln((I*a+a^2*(x-I/
a))/(a^2)^(1/2)+(a^2*(x-I/a)^2+2*I*a*(x-I/a))^(1/2))/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.46689, size = 45, normalized size = 1.1 \begin{align*} -\frac{\operatorname{arsinh}\left (a x\right )}{a} + \frac{2 i \, \sqrt{a^{2} x^{2} + 1}}{i \, a^{2} x + a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^2*(a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-arcsinh(a*x)/a + 2*I*sqrt(a^2*x^2 + 1)/(I*a^2*x + a)

________________________________________________________________________________________

Fricas [A]  time = 1.95559, size = 126, normalized size = 3.07 \begin{align*} \frac{2 \, a x +{\left (a x - i\right )} \log \left (-a x + \sqrt{a^{2} x^{2} + 1}\right ) + 2 \, \sqrt{a^{2} x^{2} + 1} - 2 i}{a^{2} x - i \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^2*(a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

(2*a*x + (a*x - I)*log(-a*x + sqrt(a^2*x^2 + 1)) + 2*sqrt(a^2*x^2 + 1) - 2*I)/(a^2*x - I*a)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a^{2} x^{2} + 1}}{\left (i a x + 1\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)**2*(a**2*x**2+1)**(1/2),x)

[Out]

Integral(sqrt(a**2*x**2 + 1)/(I*a*x + 1)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{undef} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^2*(a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

undef