3.298 \(\int \frac{e^{-2 \tan ^{-1}(a x)}}{(c+a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=38 \[ -\frac{(2-a x) e^{-2 \tan ^{-1}(a x)}}{5 a c \sqrt{a^2 c x^2+c}} \]

[Out]

-(2 - a*x)/(5*a*c*E^(2*ArcTan[a*x])*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0392175, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043, Rules used = {5069} \[ -\frac{(2-a x) e^{-2 \tan ^{-1}(a x)}}{5 a c \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(2*ArcTan[a*x])*(c + a^2*c*x^2)^(3/2)),x]

[Out]

-(2 - a*x)/(5*a*c*E^(2*ArcTan[a*x])*Sqrt[c + a^2*c*x^2])

Rule 5069

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[((n + a*x)*E^(n*ArcTan[a*x]))/
(a*c*(n^2 + 1)*Sqrt[c + d*x^2]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] &&  !IntegerQ[I*n]

Rubi steps

\begin{align*} \int \frac{e^{-2 \tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{3/2}} \, dx &=-\frac{e^{-2 \tan ^{-1}(a x)} (2-a x)}{5 a c \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0213199, size = 37, normalized size = 0.97 \[ \frac{(a x-2) e^{-2 \tan ^{-1}(a x)}}{5 a c \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(2*ArcTan[a*x])*(c + a^2*c*x^2)^(3/2)),x]

[Out]

(-2 + a*x)/(5*a*c*E^(2*ArcTan[a*x])*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 41, normalized size = 1.1 \begin{align*}{\frac{ \left ({a}^{2}{x}^{2}+1 \right ) \left ( ax-2 \right ) }{5\,a{{\rm e}^{2\,\arctan \left ( ax \right ) }}} \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(3/2),x)

[Out]

1/5*(a^2*x^2+1)*(a*x-2)/a/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (-2 \, \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(e^(-2*arctan(a*x))/(a^2*c*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.94746, size = 103, normalized size = 2.71 \begin{align*} \frac{\sqrt{a^{2} c x^{2} + c}{\left (a x - 2\right )} e^{\left (-2 \, \arctan \left (a x\right )\right )}}{5 \,{\left (a^{3} c^{2} x^{2} + a c^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

1/5*sqrt(a^2*c*x^2 + c)*(a*x - 2)*e^(-2*arctan(a*x))/(a^3*c^2*x^2 + a*c^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*atan(a*x))/(a**2*c*x**2+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (-2 \, \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(e^(-2*arctan(a*x))/(a^2*c*x^2 + c)^(3/2), x)