3.265 \(\int \frac{e^{2 \tan ^{-1}(a x)}}{(c+a^2 c x^2)^3} \, dx\)

Optimal. Leaf size=88 \[ \frac{3 (a x+1) e^{2 \tan ^{-1}(a x)}}{20 a c^3 \left (a^2 x^2+1\right )}+\frac{(2 a x+1) e^{2 \tan ^{-1}(a x)}}{10 a c^3 \left (a^2 x^2+1\right )^2}+\frac{3 e^{2 \tan ^{-1}(a x)}}{40 a c^3} \]

[Out]

(3*E^(2*ArcTan[a*x]))/(40*a*c^3) + (E^(2*ArcTan[a*x])*(1 + 2*a*x))/(10*a*c^3*(1 + a^2*x^2)^2) + (3*E^(2*ArcTan
[a*x])*(1 + a*x))/(20*a*c^3*(1 + a^2*x^2))

________________________________________________________________________________________

Rubi [A]  time = 0.0894982, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {5070, 5071} \[ \frac{3 (a x+1) e^{2 \tan ^{-1}(a x)}}{20 a c^3 \left (a^2 x^2+1\right )}+\frac{(2 a x+1) e^{2 \tan ^{-1}(a x)}}{10 a c^3 \left (a^2 x^2+1\right )^2}+\frac{3 e^{2 \tan ^{-1}(a x)}}{40 a c^3} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTan[a*x])/(c + a^2*c*x^2)^3,x]

[Out]

(3*E^(2*ArcTan[a*x]))/(40*a*c^3) + (E^(2*ArcTan[a*x])*(1 + 2*a*x))/(10*a*c^3*(1 + a^2*x^2)^2) + (3*E^(2*ArcTan
[a*x])*(1 + a*x))/(20*a*c^3*(1 + a^2*x^2))

Rule 5070

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((n - 2*a*(p + 1)*x)*(c + d*x^2
)^(p + 1)*E^(n*ArcTan[a*x]))/(a*c*(n^2 + 4*(p + 1)^2)), x] + Dist[(2*(p + 1)*(2*p + 3))/(c*(n^2 + 4*(p + 1)^2)
), Int[(c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1]
&&  !IntegerQ[I*n] && NeQ[n^2 + 4*(p + 1)^2, 0] && IntegerQ[2*p]

Rule 5071

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[E^(n*ArcTan[a*x])/(a*c*n), x] /; Fre
eQ[{a, c, d, n}, x] && EqQ[d, a^2*c]

Rubi steps

\begin{align*} \int \frac{e^{2 \tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^3} \, dx &=\frac{e^{2 \tan ^{-1}(a x)} (1+2 a x)}{10 a c^3 \left (1+a^2 x^2\right )^2}+\frac{3 \int \frac{e^{2 \tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^2} \, dx}{5 c}\\ &=\frac{e^{2 \tan ^{-1}(a x)} (1+2 a x)}{10 a c^3 \left (1+a^2 x^2\right )^2}+\frac{3 e^{2 \tan ^{-1}(a x)} (1+a x)}{20 a c^3 \left (1+a^2 x^2\right )}+\frac{3 \int \frac{e^{2 \tan ^{-1}(a x)}}{c+a^2 c x^2} \, dx}{20 c^2}\\ &=\frac{3 e^{2 \tan ^{-1}(a x)}}{40 a c^3}+\frac{e^{2 \tan ^{-1}(a x)} (1+2 a x)}{10 a c^3 \left (1+a^2 x^2\right )^2}+\frac{3 e^{2 \tan ^{-1}(a x)} (1+a x)}{20 a c^3 \left (1+a^2 x^2\right )}\\ \end{align*}

Mathematica [C]  time = 0.11687, size = 86, normalized size = 0.98 \[ \frac{4 (2 a x+1) e^{2 \tan ^{-1}(a x)}+3 (1-i a x)^i (1+i a x)^{-i} \left (a^2 x^2+1\right ) \left (a^2 x^2+2 a x+3\right )}{40 a c^3 \left (a^2 x^2+1\right )^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(2*ArcTan[a*x])/(c + a^2*c*x^2)^3,x]

[Out]

(4*E^(2*ArcTan[a*x])*(1 + 2*a*x) + (3*(1 - I*a*x)^I*(1 + a^2*x^2)*(3 + 2*a*x + a^2*x^2))/(1 + I*a*x)^I)/(40*a*
c^3*(1 + a^2*x^2)^2)

________________________________________________________________________________________

Maple [A]  time = 0.037, size = 57, normalized size = 0.7 \begin{align*}{\frac{{{\rm e}^{2\,\arctan \left ( ax \right ) }} \left ( 3\,{a}^{4}{x}^{4}+6\,{a}^{3}{x}^{3}+12\,{a}^{2}{x}^{2}+14\,ax+13 \right ) }{40\, \left ({a}^{2}{x}^{2}+1 \right ) ^{2}a{c}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(2*arctan(a*x))/(a^2*c*x^2+c)^3,x)

[Out]

1/40*exp(2*arctan(a*x))*(3*a^4*x^4+6*a^3*x^3+12*a^2*x^2+14*a*x+13)/(a^2*x^2+1)^2/a/c^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (2 \, \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*arctan(a*x))/(a^2*c*x^2+c)^3,x, algorithm="maxima")

[Out]

integrate(e^(2*arctan(a*x))/(a^2*c*x^2 + c)^3, x)

________________________________________________________________________________________

Fricas [A]  time = 2.12437, size = 153, normalized size = 1.74 \begin{align*} \frac{{\left (3 \, a^{4} x^{4} + 6 \, a^{3} x^{3} + 12 \, a^{2} x^{2} + 14 \, a x + 13\right )} e^{\left (2 \, \arctan \left (a x\right )\right )}}{40 \,{\left (a^{5} c^{3} x^{4} + 2 \, a^{3} c^{3} x^{2} + a c^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*arctan(a*x))/(a^2*c*x^2+c)^3,x, algorithm="fricas")

[Out]

1/40*(3*a^4*x^4 + 6*a^3*x^3 + 12*a^2*x^2 + 14*a*x + 13)*e^(2*arctan(a*x))/(a^5*c^3*x^4 + 2*a^3*c^3*x^2 + a*c^3
)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*atan(a*x))/(a**2*c*x**2+c)**3,x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (2 \, \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*arctan(a*x))/(a^2*c*x^2+c)^3,x, algorithm="giac")

[Out]

integrate(e^(2*arctan(a*x))/(a^2*c*x^2 + c)^3, x)