3.242 \(\int \frac{e^{n \tan ^{-1}(a+b x)}}{x^2} \, dx\)

Optimal. Leaf size=128 \[ -\frac{4 b (-i a-i b x+1)^{1+\frac{i n}{2}} (i a+i b x+1)^{-1-\frac{i n}{2}} \, _2F_1\left (2,\frac{i n}{2}+1;\frac{i n}{2}+2;\frac{(i-a) (-i a-i b x+1)}{(a+i) (i a+i b x+1)}\right )}{(a+i)^2 (-n+2 i)} \]

[Out]

(-4*b*(1 - I*a - I*b*x)^(1 + (I/2)*n)*(1 + I*a + I*b*x)^(-1 - (I/2)*n)*Hypergeometric2F1[2, 1 + (I/2)*n, 2 + (
I/2)*n, ((I - a)*(1 - I*a - I*b*x))/((I + a)*(1 + I*a + I*b*x))])/((I + a)^2*(2*I - n))

________________________________________________________________________________________

Rubi [A]  time = 0.0428307, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {5095, 131} \[ -\frac{4 b (-i a-i b x+1)^{1+\frac{i n}{2}} (i a+i b x+1)^{-1-\frac{i n}{2}} \, _2F_1\left (2,\frac{i n}{2}+1;\frac{i n}{2}+2;\frac{(i-a) (-i a-i b x+1)}{(a+i) (i a+i b x+1)}\right )}{(a+i)^2 (-n+2 i)} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTan[a + b*x])/x^2,x]

[Out]

(-4*b*(1 - I*a - I*b*x)^(1 + (I/2)*n)*(1 + I*a + I*b*x)^(-1 - (I/2)*n)*Hypergeometric2F1[2, 1 + (I/2)*n, 2 + (
I/2)*n, ((I - a)*(1 - I*a - I*b*x))/((I + a)*(1 + I*a + I*b*x))])/((I + a)^2*(2*I - n))

Rule 5095

Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[((d + e*x)^m*(1 -
 I*a*c - I*b*c*x)^((I*n)/2))/(1 + I*a*c + I*b*c*x)^((I*n)/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x]

Rule 131

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((b*c -
a*d)^n*(a + b*x)^(m + 1)*Hypergeometric2F1[m + 1, -n, m + 2, -(((d*e - c*f)*(a + b*x))/((b*c - a*d)*(e + f*x))
)])/((m + 1)*(b*e - a*f)^(n + 1)*(e + f*x)^(m + 1)), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n + p
 + 2, 0] && ILtQ[n, 0]

Rubi steps

\begin{align*} \int \frac{e^{n \tan ^{-1}(a+b x)}}{x^2} \, dx &=\int \frac{(1-i a-i b x)^{\frac{i n}{2}} (1+i a+i b x)^{-\frac{i n}{2}}}{x^2} \, dx\\ &=-\frac{4 b (1-i a-i b x)^{1+\frac{i n}{2}} (1+i a+i b x)^{-1-\frac{i n}{2}} \, _2F_1\left (2,1+\frac{i n}{2};2+\frac{i n}{2};\frac{(i-a) (1-i a-i b x)}{(i+a) (1+i a+i b x)}\right )}{(i+a)^2 (2 i-n)}\\ \end{align*}

Mathematica [A]  time = 0.022431, size = 125, normalized size = 0.98 \[ -\frac{4 i b (i a+i b x+1)^{-\frac{i n}{2}} (-i (a+b x+i))^{1+\frac{i n}{2}} \, _2F_1\left (2,\frac{i n}{2}+1;\frac{i n}{2}+2;\frac{a^2+b x a-i b x+1}{a^2+b x a+i b x+1}\right )}{(a+i)^2 (n-2 i) (a+b x-i)} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTan[a + b*x])/x^2,x]

[Out]

((-4*I)*b*((-I)*(I + a + b*x))^(1 + (I/2)*n)*Hypergeometric2F1[2, 1 + (I/2)*n, 2 + (I/2)*n, (1 + a^2 - I*b*x +
 a*b*x)/(1 + a^2 + I*b*x + a*b*x)])/((I + a)^2*(-2*I + n)*(1 + I*a + I*b*x)^((I/2)*n)*(-I + a + b*x))

________________________________________________________________________________________

Maple [F]  time = 0.193, size = 0, normalized size = 0. \begin{align*} \int{\frac{{{\rm e}^{n\arctan \left ( bx+a \right ) }}}{{x}^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(b*x+a))/x^2,x)

[Out]

int(exp(n*arctan(b*x+a))/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (n \arctan \left (b x + a\right )\right )}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(b*x+a))/x^2,x, algorithm="maxima")

[Out]

integrate(e^(n*arctan(b*x + a))/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e^{\left (n \arctan \left (b x + a\right )\right )}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(b*x+a))/x^2,x, algorithm="fricas")

[Out]

integral(e^(n*arctan(b*x + a))/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{n \operatorname{atan}{\left (a + b x \right )}}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(b*x+a))/x**2,x)

[Out]

Integral(exp(n*atan(a + b*x))/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\left (n \arctan \left (b x + a\right )\right )}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(b*x+a))/x^2,x, algorithm="giac")

[Out]

integrate(e^(n*arctan(b*x + a))/x^2, x)