3.218 \(\int e^{\frac{1}{2} i \tan ^{-1}(a+b x)} \, dx\)

Optimal. Leaf size=338 \[ \frac{i (-i a-i b x+1)^{3/4} \sqrt [4]{i a+i b x+1}}{b}+\frac{i \log \left (\frac{\sqrt{-i a-i b x+1}}{\sqrt{i a+i b x+1}}-\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}+1\right )}{2 \sqrt{2} b}-\frac{i \log \left (\frac{\sqrt{-i a-i b x+1}}{\sqrt{i a+i b x+1}}+\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}+1\right )}{2 \sqrt{2} b}-\frac{i \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}\right )}{\sqrt{2} b}+\frac{i \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}\right )}{\sqrt{2} b} \]

[Out]

(I*(1 - I*a - I*b*x)^(3/4)*(1 + I*a + I*b*x)^(1/4))/b - (I*ArcTan[1 - (Sqrt[2]*(1 - I*a - I*b*x)^(1/4))/(1 + I
*a + I*b*x)^(1/4)])/(Sqrt[2]*b) + (I*ArcTan[1 + (Sqrt[2]*(1 - I*a - I*b*x)^(1/4))/(1 + I*a + I*b*x)^(1/4)])/(S
qrt[2]*b) + ((I/2)*Log[1 + Sqrt[1 - I*a - I*b*x]/Sqrt[1 + I*a + I*b*x] - (Sqrt[2]*(1 - I*a - I*b*x)^(1/4))/(1
+ I*a + I*b*x)^(1/4)])/(Sqrt[2]*b) - ((I/2)*Log[1 + Sqrt[1 - I*a - I*b*x]/Sqrt[1 + I*a + I*b*x] + (Sqrt[2]*(1
- I*a - I*b*x)^(1/4))/(1 + I*a + I*b*x)^(1/4)])/(Sqrt[2]*b)

________________________________________________________________________________________

Rubi [A]  time = 0.195212, antiderivative size = 338, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.714, Rules used = {5093, 50, 63, 331, 297, 1162, 617, 204, 1165, 628} \[ \frac{i (-i a-i b x+1)^{3/4} \sqrt [4]{i a+i b x+1}}{b}+\frac{i \log \left (\frac{\sqrt{-i a-i b x+1}}{\sqrt{i a+i b x+1}}-\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}+1\right )}{2 \sqrt{2} b}-\frac{i \log \left (\frac{\sqrt{-i a-i b x+1}}{\sqrt{i a+i b x+1}}+\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}+1\right )}{2 \sqrt{2} b}-\frac{i \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}\right )}{\sqrt{2} b}+\frac{i \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{-i a-i b x+1}}{\sqrt [4]{i a+i b x+1}}\right )}{\sqrt{2} b} \]

Antiderivative was successfully verified.

[In]

Int[E^((I/2)*ArcTan[a + b*x]),x]

[Out]

(I*(1 - I*a - I*b*x)^(3/4)*(1 + I*a + I*b*x)^(1/4))/b - (I*ArcTan[1 - (Sqrt[2]*(1 - I*a - I*b*x)^(1/4))/(1 + I
*a + I*b*x)^(1/4)])/(Sqrt[2]*b) + (I*ArcTan[1 + (Sqrt[2]*(1 - I*a - I*b*x)^(1/4))/(1 + I*a + I*b*x)^(1/4)])/(S
qrt[2]*b) + ((I/2)*Log[1 + Sqrt[1 - I*a - I*b*x]/Sqrt[1 + I*a + I*b*x] - (Sqrt[2]*(1 - I*a - I*b*x)^(1/4))/(1
+ I*a + I*b*x)^(1/4)])/(Sqrt[2]*b) - ((I/2)*Log[1 + Sqrt[1 - I*a - I*b*x]/Sqrt[1 + I*a + I*b*x] + (Sqrt[2]*(1
- I*a - I*b*x)^(1/4))/(1 + I*a + I*b*x)^(1/4)])/(Sqrt[2]*b)

Rule 5093

Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Int[(1 - I*a*c - I*b*c*x)^((I*n)/2)/(1 + I*a*c +
 I*b*c*x)^((I*n)/2), x] /; FreeQ[{a, b, c, n}, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int e^{\frac{1}{2} i \tan ^{-1}(a+b x)} \, dx &=\int \frac{\sqrt [4]{1+i a+i b x}}{\sqrt [4]{1-i a-i b x}} \, dx\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}+\frac{1}{2} \int \frac{1}{\sqrt [4]{1-i a-i b x} (1+i a+i b x)^{3/4}} \, dx\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}+\frac{(2 i) \operatorname{Subst}\left (\int \frac{x^2}{\left (2-x^4\right )^{3/4}} \, dx,x,\sqrt [4]{1-i a-i b x}\right )}{b}\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}+\frac{(2 i) \operatorname{Subst}\left (\int \frac{x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{b}\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}-\frac{i \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{b}+\frac{i \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{b}\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}+\frac{i \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 b}+\frac{i \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 b}+\frac{i \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 \sqrt{2} b}+\frac{i \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 \sqrt{2} b}\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}+\frac{i \log \left (1+\frac{\sqrt{1-i a-i b x}}{\sqrt{1+i a+i b x}}-\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 \sqrt{2} b}-\frac{i \log \left (1+\frac{\sqrt{1-i a-i b x}}{\sqrt{1+i a+i b x}}+\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 \sqrt{2} b}+\frac{i \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{\sqrt{2} b}-\frac{i \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{\sqrt{2} b}\\ &=\frac{i (1-i a-i b x)^{3/4} \sqrt [4]{1+i a+i b x}}{b}-\frac{i \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{\sqrt{2} b}+\frac{i \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{\sqrt{2} b}+\frac{i \log \left (1+\frac{\sqrt{1-i a-i b x}}{\sqrt{1+i a+i b x}}-\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 \sqrt{2} b}-\frac{i \log \left (1+\frac{\sqrt{1-i a-i b x}}{\sqrt{1+i a+i b x}}+\frac{\sqrt{2} \sqrt [4]{1-i a-i b x}}{\sqrt [4]{1+i a+i b x}}\right )}{2 \sqrt{2} b}\\ \end{align*}

Mathematica [C]  time = 0.015582, size = 45, normalized size = 0.13 \[ -\frac{8 i e^{\frac{5}{2} i \tan ^{-1}(a+b x)} \, _2F_1\left (\frac{5}{4},2;\frac{9}{4};-e^{2 i \tan ^{-1}(a+b x)}\right )}{5 b} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((I/2)*ArcTan[a + b*x]),x]

[Out]

(((-8*I)/5)*E^(((5*I)/2)*ArcTan[a + b*x])*Hypergeometric2F1[5/4, 2, 9/4, -E^((2*I)*ArcTan[a + b*x])])/b

________________________________________________________________________________________

Maple [F]  time = 0.194, size = 0, normalized size = 0. \begin{align*} \int \sqrt{{(1+i \left ( bx+a \right ) ){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2),x)

[Out]

int(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\frac{i \, b x + i \, a + 1}{\sqrt{{\left (b x + a\right )}^{2} + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt((I*b*x + I*a + 1)/sqrt((b*x + a)^2 + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.3546, size = 636, normalized size = 1.88 \begin{align*} \frac{b \sqrt{\frac{i}{b^{2}}} \log \left (i \, b \sqrt{\frac{i}{b^{2}}} + \sqrt{\frac{i \, \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}}\right ) - b \sqrt{\frac{i}{b^{2}}} \log \left (-i \, b \sqrt{\frac{i}{b^{2}}} + \sqrt{\frac{i \, \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}}\right ) + b \sqrt{-\frac{i}{b^{2}}} \log \left (i \, b \sqrt{-\frac{i}{b^{2}}} + \sqrt{\frac{i \, \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}}\right ) - b \sqrt{-\frac{i}{b^{2}}} \log \left (-i \, b \sqrt{-\frac{i}{b^{2}}} + \sqrt{\frac{i \, \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}}\right ) +{\left (2 \, b x + 2 \, a + 2 i\right )} \sqrt{\frac{i \, \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}}}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

1/2*(b*sqrt(I/b^2)*log(I*b*sqrt(I/b^2) + sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x + a + I))) - b*sqrt(I/b
^2)*log(-I*b*sqrt(I/b^2) + sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x + a + I))) + b*sqrt(-I/b^2)*log(I*b*s
qrt(-I/b^2) + sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x + a + I))) - b*sqrt(-I/b^2)*log(-I*b*sqrt(-I/b^2)
+ sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x + a + I))) + (2*b*x + 2*a + 2*I)*sqrt(I*sqrt(b^2*x^2 + 2*a*b*x
 + a^2 + 1)/(b*x + a + I)))/b

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*(b*x+a))/(1+(b*x+a)**2)**(1/2))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\frac{i \, b x + i \, a + 1}{\sqrt{{\left (b x + a\right )}^{2} + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt((I*b*x + I*a + 1)/sqrt((b*x + a)^2 + 1)), x)