3.317 \(\int \frac{\sqrt{1-a^2-2 a b x-b^2 x^2}}{\sin ^{-1}(a+b x)^2} \, dx\)

Optimal. Leaf size=39 \[ -\frac{\text{Si}\left (2 \sin ^{-1}(a+b x)\right )}{b}-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)} \]

[Out]

-((1 - (a + b*x)^2)/(b*ArcSin[a + b*x])) - SinIntegral[2*ArcSin[a + b*x]]/b

________________________________________________________________________________________

Rubi [A]  time = 0.114454, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4807, 4659, 4635, 4406, 12, 3299} \[ -\frac{\text{Si}\left (2 \sin ^{-1}(a+b x)\right )}{b}-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - a^2 - 2*a*b*x - b^2*x^2]/ArcSin[a + b*x]^2,x]

[Out]

-((1 - (a + b*x)^2)/(b*ArcSin[a + b*x])) - SinIntegral[2*ArcSin[a + b*x]]/b

Rule 4807

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(p_.), x_Symbol] :> Di
st[1/d, Subst[Int[(-(C/d^2) + (C*x^2)/d^2)^p*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A,
 B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]

Rule 4659

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(Sqrt[1 - c^2*x^2]*
(d + e*x^2)^p*(a + b*ArcSin[c*x])^(n + 1))/(b*c*(n + 1)), x] + Dist[(c*(2*p + 1)*d^IntPart[p]*(d + e*x^2)^Frac
Part[p])/(b*(n + 1)*(1 - c^2*x^2)^FracPart[p]), Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x],
 x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{1-a^2-2 a b x-b^2 x^2}}{\sin ^{-1}(a+b x)^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{1-x^2}}{\sin ^{-1}(x)^2} \, dx,x,a+b x\right )}{b}\\ &=-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)}-\frac{2 \operatorname{Subst}\left (\int \frac{x}{\sin ^{-1}(x)} \, dx,x,a+b x\right )}{b}\\ &=-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)}-\frac{2 \operatorname{Subst}\left (\int \frac{\cos (x) \sin (x)}{x} \, dx,x,\sin ^{-1}(a+b x)\right )}{b}\\ &=-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)}-\frac{2 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{2 x} \, dx,x,\sin ^{-1}(a+b x)\right )}{b}\\ &=-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)}-\frac{\operatorname{Subst}\left (\int \frac{\sin (2 x)}{x} \, dx,x,\sin ^{-1}(a+b x)\right )}{b}\\ &=-\frac{1-(a+b x)^2}{b \sin ^{-1}(a+b x)}-\frac{\text{Si}\left (2 \sin ^{-1}(a+b x)\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.0580095, size = 46, normalized size = 1.18 \[ \frac{a^2-\sin ^{-1}(a+b x) \text{Si}\left (2 \sin ^{-1}(a+b x)\right )+2 a b x+b^2 x^2-1}{b \sin ^{-1}(a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - a^2 - 2*a*b*x - b^2*x^2]/ArcSin[a + b*x]^2,x]

[Out]

(-1 + a^2 + 2*a*b*x + b^2*x^2 - ArcSin[a + b*x]*SinIntegral[2*ArcSin[a + b*x]])/(b*ArcSin[a + b*x])

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 42, normalized size = 1.1 \begin{align*} -{\frac{2\,{\it Si} \left ( 2\,\arcsin \left ( bx+a \right ) \right ) \arcsin \left ( bx+a \right ) +\cos \left ( 2\,\arcsin \left ( bx+a \right ) \right ) +1}{2\,b\arcsin \left ( bx+a \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b^2*x^2-2*a*b*x-a^2+1)^(1/2)/arcsin(b*x+a)^2,x)

[Out]

-1/2/b*(2*Si(2*arcsin(b*x+a))*arcsin(b*x+a)+cos(2*arcsin(b*x+a))+1)/arcsin(b*x+a)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{b^{2} x^{2} + 2 \, a b x - 2 \, b \arctan \left (b x + a, \sqrt{b x + a + 1} \sqrt{-b x - a + 1}\right ) \int \frac{b x + a}{\arctan \left (b x + a, \sqrt{b x + a + 1} \sqrt{-b x - a + 1}\right )}\,{d x} + a^{2} - 1}{b \arctan \left (b x + a, \sqrt{b x + a + 1} \sqrt{-b x - a + 1}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b^2*x^2-2*a*b*x-a^2+1)^(1/2)/arcsin(b*x+a)^2,x, algorithm="maxima")

[Out]

(b^2*x^2 + 2*a*b*x - b*arctan2(b*x + a, sqrt(b*x + a + 1)*sqrt(-b*x - a + 1))*integrate(2*(b*x + a)/arctan2(b*
x + a, sqrt(b*x + a + 1)*sqrt(-b*x - a + 1)), x) + a^2 - 1)/(b*arctan2(b*x + a, sqrt(b*x + a + 1)*sqrt(-b*x -
a + 1)))

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}}{\arcsin \left (b x + a\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b^2*x^2-2*a*b*x-a^2+1)^(1/2)/arcsin(b*x+a)^2,x, algorithm="fricas")

[Out]

integral(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)/arcsin(b*x + a)^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (a + b x - 1\right ) \left (a + b x + 1\right )}}{\operatorname{asin}^{2}{\left (a + b x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b**2*x**2-2*a*b*x-a**2+1)**(1/2)/asin(b*x+a)**2,x)

[Out]

Integral(sqrt(-(a + b*x - 1)*(a + b*x + 1))/asin(a + b*x)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.27118, size = 59, normalized size = 1.51 \begin{align*} -\frac{\operatorname{Si}\left (2 \, \arcsin \left (b x + a\right )\right )}{b} + \frac{b^{2} x^{2} + 2 \, a b x + a^{2} - 1}{b \arcsin \left (b x + a\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b^2*x^2-2*a*b*x-a^2+1)^(1/2)/arcsin(b*x+a)^2,x, algorithm="giac")

[Out]

-sin_integral(2*arcsin(b*x + a))/b + (b^2*x^2 + 2*a*b*x + a^2 - 1)/(b*arcsin(b*x + a))