3.288 \(\int \frac{a+b \sin ^{-1}(c+d x)}{(c e+d e x)^{7/2}} \, dx\)

Optimal. Leaf size=102 \[ \frac{4 b \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{e (c+d x)}}{\sqrt{e}}\right ),-1\right )}{15 d e^{7/2}}-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )}{5 d e (e (c+d x))^{5/2}}-\frac{4 b \sqrt{1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}} \]

[Out]

(-4*b*Sqrt[1 - (c + d*x)^2])/(15*d*e^2*(e*(c + d*x))^(3/2)) - (2*(a + b*ArcSin[c + d*x]))/(5*d*e*(e*(c + d*x))
^(5/2)) + (4*b*EllipticF[ArcSin[Sqrt[e*(c + d*x)]/Sqrt[e]], -1])/(15*d*e^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0905582, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {4805, 4627, 325, 329, 221} \[ -\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )}{5 d e (e (c+d x))^{5/2}}-\frac{4 b \sqrt{1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}+\frac{4 b F\left (\left .\sin ^{-1}\left (\frac{\sqrt{e (c+d x)}}{\sqrt{e}}\right )\right |-1\right )}{15 d e^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])/(c*e + d*e*x)^(7/2),x]

[Out]

(-4*b*Sqrt[1 - (c + d*x)^2])/(15*d*e^2*(e*(c + d*x))^(3/2)) - (2*(a + b*ArcSin[c + d*x]))/(5*d*e*(e*(c + d*x))
^(5/2)) + (4*b*EllipticF[ArcSin[Sqrt[e*(c + d*x)]/Sqrt[e]], -1])/(15*d*e^(7/2))

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{a+b \sin ^{-1}(c+d x)}{(c e+d e x)^{7/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a+b \sin ^{-1}(x)}{(e x)^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )}{5 d e (e (c+d x))^{5/2}}+\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{(e x)^{5/2} \sqrt{1-x^2}} \, dx,x,c+d x\right )}{5 d e}\\ &=-\frac{4 b \sqrt{1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )}{5 d e (e (c+d x))^{5/2}}+\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{e x} \sqrt{1-x^2}} \, dx,x,c+d x\right )}{15 d e^3}\\ &=-\frac{4 b \sqrt{1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )}{5 d e (e (c+d x))^{5/2}}+\frac{(4 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{e^2}}} \, dx,x,\sqrt{e (c+d x)}\right )}{15 d e^4}\\ &=-\frac{4 b \sqrt{1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )}{5 d e (e (c+d x))^{5/2}}+\frac{4 b F\left (\left .\sin ^{-1}\left (\frac{\sqrt{e (c+d x)}}{\sqrt{e}}\right )\right |-1\right )}{15 d e^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.0364516, size = 59, normalized size = 0.58 \[ \frac{-4 b (c+d x) \text{Hypergeometric2F1}\left (-\frac{3}{4},\frac{1}{2},\frac{1}{4},(c+d x)^2\right )-6 \left (a+b \sin ^{-1}(c+d x)\right )}{15 d e (e (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c + d*x])/(c*e + d*e*x)^(7/2),x]

[Out]

(-6*(a + b*ArcSin[c + d*x]) - 4*b*(c + d*x)*Hypergeometric2F1[-3/4, 1/2, 1/4, (c + d*x)^2])/(15*d*e*(e*(c + d*
x))^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 169, normalized size = 1.7 \begin{align*} 2\,{\frac{1}{de} \left ( -1/5\,{\frac{a}{ \left ( dex+ce \right ) ^{5/2}}}+b \left ( -1/5\,{\frac{1}{ \left ( dex+ce \right ) ^{5/2}}\arcsin \left ({\frac{dex+ce}{e}} \right ) }+2/5\,{\frac{1}{e} \left ( -1/3\,{\frac{1}{ \left ( dex+ce \right ) ^{3/2}}\sqrt{-{\frac{ \left ( dex+ce \right ) ^{2}}{{e}^{2}}}+1}}+1/3\,{\frac{{\it EllipticF} \left ( \sqrt{dex+ce}\sqrt{{e}^{-1}},i \right ) }{{e}^{2}\sqrt{{e}^{-1}}}\sqrt{1-{\frac{dex+ce}{e}}}\sqrt{{\frac{dex+ce}{e}}+1}{\frac{1}{\sqrt{-{\frac{ \left ( dex+ce \right ) ^{2}}{{e}^{2}}}+1}}}} \right ) } \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x)

[Out]

2/d/e*(-1/5*a/(d*e*x+c*e)^(5/2)+b*(-1/5/(d*e*x+c*e)^(5/2)*arcsin((d*e*x+c*e)/e)+2/5/e*(-1/3*(-(d*e*x+c*e)^2/e^
2+1)^(1/2)/(d*e*x+c*e)^(3/2)+1/3/e^2/(1/e)^(1/2)*(1-(d*e*x+c*e)/e)^(1/2)*((d*e*x+c*e)/e+1)^(1/2)/(-(d*e*x+c*e)
^2/e^2+1)^(1/2)*EllipticF((d*e*x+c*e)^(1/2)*(1/e)^(1/2),I))))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d e x + c e}{\left (b \arcsin \left (d x + c\right ) + a\right )}}{d^{4} e^{4} x^{4} + 4 \, c d^{3} e^{4} x^{3} + 6 \, c^{2} d^{2} e^{4} x^{2} + 4 \, c^{3} d e^{4} x + c^{4} e^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*e*x + c*e)*(b*arcsin(d*x + c) + a)/(d^4*e^4*x^4 + 4*c*d^3*e^4*x^3 + 6*c^2*d^2*e^4*x^2 + 4*c^3*
d*e^4*x + c^4*e^4), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(d*x+c))/(d*e*x+c*e)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError