3.266 \(\int \frac{(c e+d e x)^3}{(a+b \sin ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=270 \[ -\frac{\sqrt{\frac{\pi }{2}} e^3 \cos \left (\frac{4 a}{b}\right ) \text{FresnelC}\left (\frac{2 \sqrt{\frac{2}{\pi }} \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}+\frac{\sqrt{\pi } e^3 \cos \left (\frac{2 a}{b}\right ) \text{FresnelC}\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{\pi } \sqrt{b}}\right )}{b^{3/2} d}+\frac{\sqrt{\pi } e^3 \sin \left (\frac{2 a}{b}\right ) S\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right )}{b^{3/2} d}-\frac{\sqrt{\frac{\pi }{2}} e^3 \sin \left (\frac{4 a}{b}\right ) S\left (\frac{2 \sqrt{\frac{2}{\pi }} \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}} \]

[Out]

(-2*e^3*(c + d*x)^3*Sqrt[1 - (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSin[c + d*x]]) - (e^3*Sqrt[Pi/2]*Cos[(4*a)/b]*Fr
esnelC[(2*Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^3*Sqrt[Pi]*Cos[(2*a)/b]*FresnelC[
(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(b^(3/2)*d) + (e^3*Sqrt[Pi]*FresnelS[(2*Sqrt[a + b*ArcSin
[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(b^(3/2)*d) - (e^3*Sqrt[Pi/2]*FresnelS[(2*Sqrt[2/Pi]*Sqrt[a + b*
ArcSin[c + d*x]])/Sqrt[b]]*Sin[(4*a)/b])/(b^(3/2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.516021, antiderivative size = 270, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {4805, 12, 4631, 3306, 3305, 3351, 3304, 3352} \[ -\frac{\sqrt{\frac{\pi }{2}} e^3 \cos \left (\frac{4 a}{b}\right ) \text{FresnelC}\left (\frac{2 \sqrt{\frac{2}{\pi }} \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}+\frac{\sqrt{\pi } e^3 \cos \left (\frac{2 a}{b}\right ) \text{FresnelC}\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{\pi } \sqrt{b}}\right )}{b^{3/2} d}+\frac{\sqrt{\pi } e^3 \sin \left (\frac{2 a}{b}\right ) S\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right )}{b^{3/2} d}-\frac{\sqrt{\frac{\pi }{2}} e^3 \sin \left (\frac{4 a}{b}\right ) S\left (\frac{2 \sqrt{\frac{2}{\pi }} \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^3/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(-2*e^3*(c + d*x)^3*Sqrt[1 - (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSin[c + d*x]]) - (e^3*Sqrt[Pi/2]*Cos[(4*a)/b]*Fr
esnelC[(2*Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^3*Sqrt[Pi]*Cos[(2*a)/b]*FresnelC[
(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(b^(3/2)*d) + (e^3*Sqrt[Pi]*FresnelS[(2*Sqrt[a + b*ArcSin
[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(b^(3/2)*d) - (e^3*Sqrt[Pi/2]*FresnelS[(2*Sqrt[2/Pi]*Sqrt[a + b*
ArcSin[c + d*x]])/Sqrt[b]]*Sin[(4*a)/b])/(b^(3/2)*d)

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4631

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n + 1)
, Sin[x]^(m - 1)*(m - (m + 1)*Sin[x]^2), x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && G
eQ[n, -2] && LtQ[n, -1]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{(c e+d e x)^3}{\left (a+b \sin ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e^3 x^3}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^3 \operatorname{Subst}\left (\int \frac{x^3}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}}+\frac{\left (2 e^3\right ) \operatorname{Subst}\left (\int \left (\frac{\cos (2 x)}{2 \sqrt{a+b x}}-\frac{\cos (4 x)}{2 \sqrt{a+b x}}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}}+\frac{e^3 \operatorname{Subst}\left (\int \frac{\cos (2 x)}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}-\frac{e^3 \operatorname{Subst}\left (\int \frac{\cos (4 x)}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}}+\frac{\left (e^3 \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{2 a}{b}+2 x\right )}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}-\frac{\left (e^3 \cos \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{4 a}{b}+4 x\right )}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}+\frac{\left (e^3 \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{2 a}{b}+2 x\right )}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}-\frac{\left (e^3 \sin \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{4 a}{b}+4 x\right )}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}}+\frac{\left (2 e^3 \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \cos \left (\frac{2 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}-\frac{\left (2 e^3 \cos \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \cos \left (\frac{4 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac{\left (2 e^3 \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \sin \left (\frac{2 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}-\frac{\left (2 e^3 \sin \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \sin \left (\frac{4 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac{2 e^3 (c+d x)^3 \sqrt{1-(c+d x)^2}}{b d \sqrt{a+b \sin ^{-1}(c+d x)}}-\frac{e^3 \sqrt{\frac{\pi }{2}} \cos \left (\frac{4 a}{b}\right ) C\left (\frac{2 \sqrt{\frac{2}{\pi }} \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}+\frac{e^3 \sqrt{\pi } \cos \left (\frac{2 a}{b}\right ) C\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right )}{b^{3/2} d}+\frac{e^3 \sqrt{\pi } S\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right ) \sin \left (\frac{2 a}{b}\right )}{b^{3/2} d}-\frac{e^3 \sqrt{\frac{\pi }{2}} S\left (\frac{2 \sqrt{\frac{2}{\pi }} \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b}}\right ) \sin \left (\frac{4 a}{b}\right )}{b^{3/2} d}\\ \end{align*}

Mathematica [C]  time = 0.309863, size = 300, normalized size = 1.11 \[ -\frac{i e^3 e^{-\frac{4 i a}{b}} \left (\sqrt{2} e^{\frac{2 i a}{b}} \sqrt{-\frac{i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-\sqrt{2} e^{\frac{6 i a}{b}} \sqrt{\frac{i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},\frac{2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-\sqrt{-\frac{i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{4 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+e^{\frac{8 i a}{b}} \sqrt{\frac{i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},\frac{4 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-2 i e^{\frac{4 i a}{b}} \sin \left (2 \sin ^{-1}(c+d x)\right )+i e^{\frac{4 i a}{b}} \sin \left (4 \sin ^{-1}(c+d x)\right )\right )}{4 b d \sqrt{a+b \sin ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^3/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

((-I/4)*e^3*(Sqrt[2]*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-2*I)*(a + b*ArcSin[c
 + d*x]))/b] - Sqrt[2]*E^(((6*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((2*I)*(a + b*ArcSin[c +
 d*x]))/b] - Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-4*I)*(a + b*ArcSin[c + d*x]))/b] + E^(((8*I)
*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((4*I)*(a + b*ArcSin[c + d*x]))/b] - (2*I)*E^(((4*I)*a)/
b)*Sin[2*ArcSin[c + d*x]] + I*E^(((4*I)*a)/b)*Sin[4*ArcSin[c + d*x]]))/(b*d*E^(((4*I)*a)/b)*Sqrt[a + b*ArcSin[
c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.092, size = 307, normalized size = 1.1 \begin{align*} -{\frac{{e}^{3}}{4\,bd} \left ( 2\,\sqrt{{b}^{-1}}\sqrt{\pi }\sqrt{2}\sqrt{a+b\arcsin \left ( dx+c \right ) }\cos \left ( 4\,{\frac{a}{b}} \right ){\it FresnelC} \left ( 2\,{\frac{\sqrt{2}\sqrt{a+b\arcsin \left ( dx+c \right ) }}{\sqrt{{b}^{-1}}\sqrt{\pi }b}} \right ) +2\,\sqrt{{b}^{-1}}\sqrt{\pi }\sqrt{2}\sqrt{a+b\arcsin \left ( dx+c \right ) }\sin \left ( 4\,{\frac{a}{b}} \right ){\it FresnelS} \left ( 2\,{\frac{\sqrt{2}\sqrt{a+b\arcsin \left ( dx+c \right ) }}{\sqrt{{b}^{-1}}\sqrt{\pi }b}} \right ) -4\,\sqrt{{b}^{-1}}\sqrt{a+b\arcsin \left ( dx+c \right ) }\cos \left ( 2\,{\frac{a}{b}} \right ){\it FresnelC} \left ( 2\,{\frac{\sqrt{a+b\arcsin \left ( dx+c \right ) }}{\sqrt{{b}^{-1}}\sqrt{\pi }b}} \right ) \sqrt{\pi }-4\,\sqrt{{b}^{-1}}\sqrt{a+b\arcsin \left ( dx+c \right ) }\sin \left ( 2\,{\frac{a}{b}} \right ){\it FresnelS} \left ( 2\,{\frac{\sqrt{a+b\arcsin \left ( dx+c \right ) }}{\sqrt{{b}^{-1}}\sqrt{\pi }b}} \right ) \sqrt{\pi }+2\,\sin \left ( 2\,{\frac{a+b\arcsin \left ( dx+c \right ) }{b}}-2\,{\frac{a}{b}} \right ) -\sin \left ( 4\,{\frac{a+b\arcsin \left ( dx+c \right ) }{b}}-4\,{\frac{a}{b}} \right ) \right ){\frac{1}{\sqrt{a+b\arcsin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x)

[Out]

-1/4/d*e^3/b*(2*(1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*cos(4*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)/
(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)+2*(1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*sin(4*a/b)*F
resnelS(2*2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)-4*(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*co
s(2*a/b)*FresnelC(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)-4*(1/b)^(1/2)*(a+b*arcsin(d*x+c
))^(1/2)*sin(2*a/b)*FresnelS(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)+2*sin(2*(a+b*arcsin(
d*x+c))/b-2*a/b)-sin(4*(a+b*arcsin(d*x+c))/b-4*a/b))/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{3}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{3} \left (\int \frac{c^{3}}{a \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} \operatorname{asin}{\left (c + d x \right )}}\, dx + \int \frac{d^{3} x^{3}}{a \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} \operatorname{asin}{\left (c + d x \right )}}\, dx + \int \frac{3 c d^{2} x^{2}}{a \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} \operatorname{asin}{\left (c + d x \right )}}\, dx + \int \frac{3 c^{2} d x}{a \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asin}{\left (c + d x \right )}} \operatorname{asin}{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**3/(a+b*asin(d*x+c))**(3/2),x)

[Out]

e**3*(Integral(c**3/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(d
**3*x**3/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(3*c*d**2*x**
2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(3*c**2*d*x/(a*sqrt(
a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{3}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsin(d*x + c) + a)^(3/2), x)