3.262 \(\int \frac{c e+d e x}{\sqrt{a+b \sin ^{-1}(c+d x)}} \, dx\)

Optimal. Leaf size=105 \[ \frac{\sqrt{\pi } e \cos \left (\frac{2 a}{b}\right ) S\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right )}{2 \sqrt{b} d}-\frac{\sqrt{\pi } e \sin \left (\frac{2 a}{b}\right ) \text{FresnelC}\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{\pi } \sqrt{b}}\right )}{2 \sqrt{b} d} \]

[Out]

(e*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(2*Sqrt[b]*d) - (e*Sqrt
[Pi]*FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(2*Sqrt[b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.234942, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {4805, 12, 4635, 4406, 3306, 3305, 3351, 3304, 3352} \[ \frac{\sqrt{\pi } e \cos \left (\frac{2 a}{b}\right ) S\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right )}{2 \sqrt{b} d}-\frac{\sqrt{\pi } e \sin \left (\frac{2 a}{b}\right ) \text{FresnelC}\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{\pi } \sqrt{b}}\right )}{2 \sqrt{b} d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

(e*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(2*Sqrt[b]*d) - (e*Sqrt
[Pi]*FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(2*Sqrt[b]*d)

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{c e+d e x}{\sqrt{a+b \sin ^{-1}(c+d x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e x}{\sqrt{a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e \operatorname{Subst}\left (\int \frac{x}{\sqrt{a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e \operatorname{Subst}\left (\int \frac{\cos (x) \sin (x)}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{d}\\ &=\frac{e \operatorname{Subst}\left (\int \frac{\sin (2 x)}{2 \sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{d}\\ &=\frac{e \operatorname{Subst}\left (\int \frac{\sin (2 x)}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d}\\ &=\frac{\left (e \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{2 a}{b}+2 x\right )}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d}-\frac{\left (e \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{2 a}{b}+2 x\right )}{\sqrt{a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d}\\ &=\frac{\left (e \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \sin \left (\frac{2 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sin ^{-1}(c+d x)}\right )}{b d}-\frac{\left (e \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \cos \left (\frac{2 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sin ^{-1}(c+d x)}\right )}{b d}\\ &=\frac{e \sqrt{\pi } \cos \left (\frac{2 a}{b}\right ) S\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right )}{2 \sqrt{b} d}-\frac{e \sqrt{\pi } C\left (\frac{2 \sqrt{a+b \sin ^{-1}(c+d x)}}{\sqrt{b} \sqrt{\pi }}\right ) \sin \left (\frac{2 a}{b}\right )}{2 \sqrt{b} d}\\ \end{align*}

Mathematica [C]  time = 0.063711, size = 134, normalized size = 1.28 \[ -\frac{e e^{-\frac{2 i a}{b}} \left (\sqrt{-\frac{i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+e^{\frac{4 i a}{b}} \sqrt{\frac{i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},\frac{2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )\right )}{4 \sqrt{2} d \sqrt{a+b \sin ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

-(e*(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-2*I)*(a + b*ArcSin[c + d*x]))/b] + E^(((4*I)*a)/b)*S
qrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((2*I)*(a + b*ArcSin[c + d*x]))/b]))/(4*Sqrt[2]*d*E^(((2*I)*a)/b
)*Sqrt[a + b*ArcSin[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 85, normalized size = 0.8 \begin{align*}{\frac{\sqrt{\pi }e}{2\,d}\sqrt{{b}^{-1}} \left ( \cos \left ( 2\,{\frac{a}{b}} \right ){\it FresnelS} \left ( 2\,{\frac{\sqrt{a+b\arcsin \left ( dx+c \right ) }}{\sqrt{\pi }\sqrt{{b}^{-1}}b}} \right ) -\sin \left ( 2\,{\frac{a}{b}} \right ){\it FresnelC} \left ( 2\,{\frac{\sqrt{a+b\arcsin \left ( dx+c \right ) }}{\sqrt{\pi }\sqrt{{b}^{-1}}b}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x)

[Out]

1/2*Pi^(1/2)*(1/b)^(1/2)*e*(cos(2*a/b)*FresnelS(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)-sin(2*a/b)
*FresnelC(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b))/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d e x + c e}{\sqrt{b \arcsin \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)/sqrt(b*arcsin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e \left (\int \frac{c}{\sqrt{a + b \operatorname{asin}{\left (c + d x \right )}}}\, dx + \int \frac{d x}{\sqrt{a + b \operatorname{asin}{\left (c + d x \right )}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*asin(d*x+c))**(1/2),x)

[Out]

e*(Integral(c/sqrt(a + b*asin(c + d*x)), x) + Integral(d*x/sqrt(a + b*asin(c + d*x)), x))

________________________________________________________________________________________

Giac [A]  time = 2.12984, size = 204, normalized size = 1.94 \begin{align*} -\frac{\sqrt{\pi } i \operatorname{erf}\left (\frac{\sqrt{b \arcsin \left (d x + c\right ) + a} \sqrt{b} i}{{\left | b \right |}} - \frac{\sqrt{b \arcsin \left (d x + c\right ) + a}}{\sqrt{b}}\right ) e^{\left (-\frac{2 \, a i}{b} + 1\right )}}{4 \,{\left (\frac{b^{\frac{3}{2}} i}{{\left | b \right |}} - \sqrt{b}\right )} d} - \frac{\sqrt{\pi } i \operatorname{erf}\left (-\frac{\sqrt{b \arcsin \left (d x + c\right ) + a} \sqrt{b} i}{{\left | b \right |}} - \frac{\sqrt{b \arcsin \left (d x + c\right ) + a}}{\sqrt{b}}\right ) e^{\left (\frac{2 \, a i}{b} + 1\right )}}{4 \, \sqrt{b} d{\left (\frac{b i}{{\left | b \right |}} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(pi)*i*erf(sqrt(b*arcsin(d*x + c) + a)*sqrt(b)*i/abs(b) - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^(-2*
a*i/b + 1)/((b^(3/2)*i/abs(b) - sqrt(b))*d) - 1/4*sqrt(pi)*i*erf(-sqrt(b*arcsin(d*x + c) + a)*sqrt(b)*i/abs(b)
 - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^(2*a*i/b + 1)/(sqrt(b)*d*(b*i/abs(b) + 1))