3.219 \(\int \frac{1}{a+b \sin ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=57 \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a+b \sin ^{-1}(c+d x)}{b}\right )}{b d}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c+d x)}{b}\right )}{b d} \]

[Out]

(Cos[a/b]*CosIntegral[(a + b*ArcSin[c + d*x])/b])/(b*d) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c + d*x])/b])/(b
*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0839661, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.417, Rules used = {4803, 4623, 3303, 3299, 3302} \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a+b \sin ^{-1}(c+d x)}{b}\right )}{b d}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c+d x)}{b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])^(-1),x]

[Out]

(Cos[a/b]*CosIntegral[(a + b*ArcSin[c + d*x])/b])/(b*d) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c + d*x])/b])/(b
*d)

Rule 4803

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSin[x])^n, x],
 x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 4623

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[a/b - x/b], x], x, a
 + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{1}{a+b \sin ^{-1}(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{a+b \sin ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}-\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{b d}\\ &=\frac{\cos \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{b d}+\frac{\sin \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{b d}\\ &=\frac{\cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a+b \sin ^{-1}(c+d x)}{b}\right )}{b d}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c+d x)}{b}\right )}{b d}\\ \end{align*}

Mathematica [A]  time = 0.0795795, size = 48, normalized size = 0.84 \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c+d x)\right )+\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c+d x)\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c + d*x])^(-1),x]

[Out]

(Cos[a/b]*CosIntegral[a/b + ArcSin[c + d*x]] + Sin[a/b]*SinIntegral[a/b + ArcSin[c + d*x]])/(b*d)

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 52, normalized size = 0.9 \begin{align*}{\frac{1}{d} \left ({\frac{1}{b}{\it Si} \left ( \arcsin \left ( dx+c \right ) +{\frac{a}{b}} \right ) \sin \left ({\frac{a}{b}} \right ) }+{\frac{1}{b}{\it Ci} \left ( \arcsin \left ( dx+c \right ) +{\frac{a}{b}} \right ) \cos \left ({\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsin(d*x+c)),x)

[Out]

1/d*(Si(arcsin(d*x+c)+a/b)*sin(a/b)/b+Ci(arcsin(d*x+c)+a/b)*cos(a/b)/b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{b \arcsin \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/(b*arcsin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b \arcsin \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(d*x+c)),x, algorithm="fricas")

[Out]

integral(1/(b*arcsin(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{a + b \operatorname{asin}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asin(d*x+c)),x)

[Out]

Integral(1/(a + b*asin(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.15563, size = 72, normalized size = 1.26 \begin{align*} \frac{\cos \left (\frac{a}{b}\right ) \operatorname{Ci}\left (\frac{a}{b} + \arcsin \left (d x + c\right )\right )}{b d} + \frac{\sin \left (\frac{a}{b}\right ) \operatorname{Si}\left (\frac{a}{b} + \arcsin \left (d x + c\right )\right )}{b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(d*x+c)),x, algorithm="giac")

[Out]

cos(a/b)*cos_integral(a/b + arcsin(d*x + c))/(b*d) + sin(a/b)*sin_integral(a/b + arcsin(d*x + c))/(b*d)