3.199 \(\int (c e+d e x)^2 (a+b \sin ^{-1}(c+d x))^3 \, dx\)

Optimal. Leaf size=235 \[ -\frac{2 b^2 e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )}{9 d}-\frac{4}{3} a b^2 e^2 x+\frac{2 b e^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}+\frac{2 b^3 e^2 \left (1-(c+d x)^2\right )^{3/2}}{27 d}-\frac{14 b^3 e^2 \sqrt{1-(c+d x)^2}}{9 d}-\frac{4 b^3 e^2 (c+d x) \sin ^{-1}(c+d x)}{3 d} \]

[Out]

(-4*a*b^2*e^2*x)/3 - (14*b^3*e^2*Sqrt[1 - (c + d*x)^2])/(9*d) + (2*b^3*e^2*(1 - (c + d*x)^2)^(3/2))/(27*d) - (
4*b^3*e^2*(c + d*x)*ArcSin[c + d*x])/(3*d) - (2*b^2*e^2*(c + d*x)^3*(a + b*ArcSin[c + d*x]))/(9*d) + (2*b*e^2*
Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x])^2)/(3*d) + (b*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSi
n[c + d*x])^2)/(3*d) + (e^2*(c + d*x)^3*(a + b*ArcSin[c + d*x])^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.322174, antiderivative size = 235, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {4805, 12, 4627, 4707, 4677, 4619, 261, 266, 43} \[ -\frac{2 b^2 e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )}{9 d}-\frac{4}{3} a b^2 e^2 x+\frac{2 b e^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}+\frac{2 b^3 e^2 \left (1-(c+d x)^2\right )^{3/2}}{27 d}-\frac{14 b^3 e^2 \sqrt{1-(c+d x)^2}}{9 d}-\frac{4 b^3 e^2 (c+d x) \sin ^{-1}(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2*(a + b*ArcSin[c + d*x])^3,x]

[Out]

(-4*a*b^2*e^2*x)/3 - (14*b^3*e^2*Sqrt[1 - (c + d*x)^2])/(9*d) + (2*b^3*e^2*(1 - (c + d*x)^2)^(3/2))/(27*d) - (
4*b^3*e^2*(c + d*x)*ArcSin[c + d*x])/(3*d) - (2*b^2*e^2*(c + d*x)^3*(a + b*ArcSin[c + d*x]))/(9*d) + (2*b*e^2*
Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x])^2)/(3*d) + (b*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSi
n[c + d*x])^2)/(3*d) + (e^2*(c + d*x)^3*(a + b*ArcSin[c + d*x])^3)/(3*d)

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4619

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
(x*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int (c e+d e x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^3 \, dx &=\frac{\operatorname{Subst}\left (\int e^2 x^2 \left (a+b \sin ^{-1}(x)\right )^3 \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 \operatorname{Subst}\left (\int x^2 \left (a+b \sin ^{-1}(x)\right )^3 \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}-\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{x^3 \left (a+b \sin ^{-1}(x)\right )^2}{\sqrt{1-x^2}} \, dx,x,c+d x\right )}{d}\\ &=\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}-\frac{\left (2 b e^2\right ) \operatorname{Subst}\left (\int \frac{x \left (a+b \sin ^{-1}(x)\right )^2}{\sqrt{1-x^2}} \, dx,x,c+d x\right )}{3 d}-\frac{\left (2 b^2 e^2\right ) \operatorname{Subst}\left (\int x^2 \left (a+b \sin ^{-1}(x)\right ) \, dx,x,c+d x\right )}{3 d}\\ &=-\frac{2 b^2 e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )}{9 d}+\frac{2 b e^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}-\frac{\left (4 b^2 e^2\right ) \operatorname{Subst}\left (\int \left (a+b \sin ^{-1}(x)\right ) \, dx,x,c+d x\right )}{3 d}+\frac{\left (2 b^3 e^2\right ) \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{1-x^2}} \, dx,x,c+d x\right )}{9 d}\\ &=-\frac{4}{3} a b^2 e^2 x-\frac{2 b^2 e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )}{9 d}+\frac{2 b e^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}+\frac{\left (b^3 e^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{1-x}} \, dx,x,(c+d x)^2\right )}{9 d}-\frac{\left (4 b^3 e^2\right ) \operatorname{Subst}\left (\int \sin ^{-1}(x) \, dx,x,c+d x\right )}{3 d}\\ &=-\frac{4}{3} a b^2 e^2 x-\frac{4 b^3 e^2 (c+d x) \sin ^{-1}(c+d x)}{3 d}-\frac{2 b^2 e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )}{9 d}+\frac{2 b e^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}+\frac{\left (b^3 e^2\right ) \operatorname{Subst}\left (\int \left (\frac{1}{\sqrt{1-x}}-\sqrt{1-x}\right ) \, dx,x,(c+d x)^2\right )}{9 d}+\frac{\left (4 b^3 e^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{1-x^2}} \, dx,x,c+d x\right )}{3 d}\\ &=-\frac{4}{3} a b^2 e^2 x-\frac{14 b^3 e^2 \sqrt{1-(c+d x)^2}}{9 d}+\frac{2 b^3 e^2 \left (1-(c+d x)^2\right )^{3/2}}{27 d}-\frac{4 b^3 e^2 (c+d x) \sin ^{-1}(c+d x)}{3 d}-\frac{2 b^2 e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )}{9 d}+\frac{2 b e^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{b e^2 (c+d x)^2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{3 d}+\frac{e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.342833, size = 199, normalized size = 0.85 \[ \frac{e^2 \left ((c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^3-b \left (\frac{2}{3} b (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )-\sqrt{1-(c+d x)^2} (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^2-2 \sqrt{1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2+4 b \left (a d x+b \sqrt{1-(c+d x)^2}+b (c+d x) \sin ^{-1}(c+d x)\right )+\frac{2}{9} b^2 \left (c^2+2 c d x+d^2 x^2+2\right ) \sqrt{1-(c+d x)^2}\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^2*(a + b*ArcSin[c + d*x])^3,x]

[Out]

(e^2*((c + d*x)^3*(a + b*ArcSin[c + d*x])^3 - b*((2*b^2*(2 + c^2 + 2*c*d*x + d^2*x^2)*Sqrt[1 - (c + d*x)^2])/9
 + (2*b*(c + d*x)^3*(a + b*ArcSin[c + d*x]))/3 - 2*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x])^2 - (c + d*x)
^2*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x])^2 + 4*b*(a*d*x + b*Sqrt[1 - (c + d*x)^2] + b*(c + d*x)*ArcSin
[c + d*x]))))/(3*d)

________________________________________________________________________________________

Maple [A]  time = 0.038, size = 280, normalized size = 1.2 \begin{align*}{\frac{1}{d} \left ({\frac{{e}^{2} \left ( dx+c \right ) ^{3}{a}^{3}}{3}}+{e}^{2}{b}^{3} \left ({\frac{ \left ( dx+c \right ) ^{3} \left ( \arcsin \left ( dx+c \right ) \right ) ^{3}}{3}}+{\frac{ \left ( \arcsin \left ( dx+c \right ) \right ) ^{2} \left ( \left ( dx+c \right ) ^{2}+2 \right ) }{3}\sqrt{1- \left ( dx+c \right ) ^{2}}}-{\frac{4}{3}\sqrt{1- \left ( dx+c \right ) ^{2}}}-{\frac{ \left ( 4\,dx+4\,c \right ) \arcsin \left ( dx+c \right ) }{3}}-{\frac{2\, \left ( dx+c \right ) ^{3}\arcsin \left ( dx+c \right ) }{9}}-{\frac{2\, \left ( dx+c \right ) ^{2}+4}{27}\sqrt{1- \left ( dx+c \right ) ^{2}}} \right ) +3\,{e}^{2}a{b}^{2} \left ( 1/3\, \left ( \arcsin \left ( dx+c \right ) \right ) ^{2} \left ( dx+c \right ) ^{3}+2/9\,\arcsin \left ( dx+c \right ) \left ( \left ( dx+c \right ) ^{2}+2 \right ) \sqrt{1- \left ( dx+c \right ) ^{2}}-{\frac{2\, \left ( dx+c \right ) ^{3}}{27}}-4/9\,dx-4/9\,c \right ) +3\,{e}^{2}{a}^{2}b \left ( 1/3\, \left ( dx+c \right ) ^{3}\arcsin \left ( dx+c \right ) +1/9\, \left ( dx+c \right ) ^{2}\sqrt{1- \left ( dx+c \right ) ^{2}}+2/9\,\sqrt{1- \left ( dx+c \right ) ^{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^3,x)

[Out]

1/d*(1/3*e^2*(d*x+c)^3*a^3+e^2*b^3*(1/3*(d*x+c)^3*arcsin(d*x+c)^3+1/3*arcsin(d*x+c)^2*((d*x+c)^2+2)*(1-(d*x+c)
^2)^(1/2)-4/3*(1-(d*x+c)^2)^(1/2)-4/3*(d*x+c)*arcsin(d*x+c)-2/9*(d*x+c)^3*arcsin(d*x+c)-2/27*((d*x+c)^2+2)*(1-
(d*x+c)^2)^(1/2))+3*e^2*a*b^2*(1/3*arcsin(d*x+c)^2*(d*x+c)^3+2/9*arcsin(d*x+c)*((d*x+c)^2+2)*(1-(d*x+c)^2)^(1/
2)-2/27*(d*x+c)^3-4/9*d*x-4/9*c)+3*e^2*a^2*b*(1/3*(d*x+c)^3*arcsin(d*x+c)+1/9*(d*x+c)^2*(1-(d*x+c)^2)^(1/2)+2/
9*(1-(d*x+c)^2)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.62982, size = 1107, normalized size = 4.71 \begin{align*} \frac{3 \,{\left (3 \, a^{3} - 2 \, a b^{2}\right )} d^{3} e^{2} x^{3} + 9 \,{\left (3 \, a^{3} - 2 \, a b^{2}\right )} c d^{2} e^{2} x^{2} - 9 \,{\left (4 \, a b^{2} -{\left (3 \, a^{3} - 2 \, a b^{2}\right )} c^{2}\right )} d e^{2} x + 9 \,{\left (b^{3} d^{3} e^{2} x^{3} + 3 \, b^{3} c d^{2} e^{2} x^{2} + 3 \, b^{3} c^{2} d e^{2} x + b^{3} c^{3} e^{2}\right )} \arcsin \left (d x + c\right )^{3} + 27 \,{\left (a b^{2} d^{3} e^{2} x^{3} + 3 \, a b^{2} c d^{2} e^{2} x^{2} + 3 \, a b^{2} c^{2} d e^{2} x + a b^{2} c^{3} e^{2}\right )} \arcsin \left (d x + c\right )^{2} + 3 \,{\left ({\left (9 \, a^{2} b - 2 \, b^{3}\right )} d^{3} e^{2} x^{3} + 3 \,{\left (9 \, a^{2} b - 2 \, b^{3}\right )} c d^{2} e^{2} x^{2} - 3 \,{\left (4 \, b^{3} -{\left (9 \, a^{2} b - 2 \, b^{3}\right )} c^{2}\right )} d e^{2} x -{\left (12 \, b^{3} c -{\left (9 \, a^{2} b - 2 \, b^{3}\right )} c^{3}\right )} e^{2}\right )} \arcsin \left (d x + c\right ) +{\left ({\left (9 \, a^{2} b - 2 \, b^{3}\right )} d^{2} e^{2} x^{2} + 2 \,{\left (9 \, a^{2} b - 2 \, b^{3}\right )} c d e^{2} x +{\left (18 \, a^{2} b - 40 \, b^{3} +{\left (9 \, a^{2} b - 2 \, b^{3}\right )} c^{2}\right )} e^{2} + 9 \,{\left (b^{3} d^{2} e^{2} x^{2} + 2 \, b^{3} c d e^{2} x +{\left (b^{3} c^{2} + 2 \, b^{3}\right )} e^{2}\right )} \arcsin \left (d x + c\right )^{2} + 18 \,{\left (a b^{2} d^{2} e^{2} x^{2} + 2 \, a b^{2} c d e^{2} x +{\left (a b^{2} c^{2} + 2 \, a b^{2}\right )} e^{2}\right )} \arcsin \left (d x + c\right )\right )} \sqrt{-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}}{27 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/27*(3*(3*a^3 - 2*a*b^2)*d^3*e^2*x^3 + 9*(3*a^3 - 2*a*b^2)*c*d^2*e^2*x^2 - 9*(4*a*b^2 - (3*a^3 - 2*a*b^2)*c^2
)*d*e^2*x + 9*(b^3*d^3*e^2*x^3 + 3*b^3*c*d^2*e^2*x^2 + 3*b^3*c^2*d*e^2*x + b^3*c^3*e^2)*arcsin(d*x + c)^3 + 27
*(a*b^2*d^3*e^2*x^3 + 3*a*b^2*c*d^2*e^2*x^2 + 3*a*b^2*c^2*d*e^2*x + a*b^2*c^3*e^2)*arcsin(d*x + c)^2 + 3*((9*a
^2*b - 2*b^3)*d^3*e^2*x^3 + 3*(9*a^2*b - 2*b^3)*c*d^2*e^2*x^2 - 3*(4*b^3 - (9*a^2*b - 2*b^3)*c^2)*d*e^2*x - (1
2*b^3*c - (9*a^2*b - 2*b^3)*c^3)*e^2)*arcsin(d*x + c) + ((9*a^2*b - 2*b^3)*d^2*e^2*x^2 + 2*(9*a^2*b - 2*b^3)*c
*d*e^2*x + (18*a^2*b - 40*b^3 + (9*a^2*b - 2*b^3)*c^2)*e^2 + 9*(b^3*d^2*e^2*x^2 + 2*b^3*c*d*e^2*x + (b^3*c^2 +
 2*b^3)*e^2)*arcsin(d*x + c)^2 + 18*(a*b^2*d^2*e^2*x^2 + 2*a*b^2*c*d*e^2*x + (a*b^2*c^2 + 2*a*b^2)*e^2)*arcsin
(d*x + c))*sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1))/d

________________________________________________________________________________________

Sympy [A]  time = 7.35458, size = 1173, normalized size = 4.99 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2*(a+b*asin(d*x+c))**3,x)

[Out]

Piecewise((a**3*c**2*e**2*x + a**3*c*d*e**2*x**2 + a**3*d**2*e**2*x**3/3 + a**2*b*c**3*e**2*asin(c + d*x)/d +
3*a**2*b*c**2*e**2*x*asin(c + d*x) + a**2*b*c**2*e**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/(3*d) + 3*a**2*b*c
*d*e**2*x**2*asin(c + d*x) + 2*a**2*b*c*e**2*x*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/3 + a**2*b*d**2*e**2*x**3
*asin(c + d*x) + a**2*b*d*e**2*x**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/3 + 2*a**2*b*e**2*sqrt(-c**2 - 2*c*d
*x - d**2*x**2 + 1)/(3*d) + a*b**2*c**3*e**2*asin(c + d*x)**2/d + 3*a*b**2*c**2*e**2*x*asin(c + d*x)**2 - 2*a*
b**2*c**2*e**2*x/3 + 2*a*b**2*c**2*e**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)*asin(c + d*x)/(3*d) + 3*a*b**2*c
*d*e**2*x**2*asin(c + d*x)**2 - 2*a*b**2*c*d*e**2*x**2/3 + 4*a*b**2*c*e**2*x*sqrt(-c**2 - 2*c*d*x - d**2*x**2
+ 1)*asin(c + d*x)/3 + a*b**2*d**2*e**2*x**3*asin(c + d*x)**2 - 2*a*b**2*d**2*e**2*x**3/9 + 2*a*b**2*d*e**2*x*
*2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)*asin(c + d*x)/3 - 4*a*b**2*e**2*x/3 + 4*a*b**2*e**2*sqrt(-c**2 - 2*c*
d*x - d**2*x**2 + 1)*asin(c + d*x)/(3*d) + b**3*c**3*e**2*asin(c + d*x)**3/(3*d) - 2*b**3*c**3*e**2*asin(c + d
*x)/(9*d) + b**3*c**2*e**2*x*asin(c + d*x)**3 - 2*b**3*c**2*e**2*x*asin(c + d*x)/3 + b**3*c**2*e**2*sqrt(-c**2
 - 2*c*d*x - d**2*x**2 + 1)*asin(c + d*x)**2/(3*d) - 2*b**3*c**2*e**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/(2
7*d) + b**3*c*d*e**2*x**2*asin(c + d*x)**3 - 2*b**3*c*d*e**2*x**2*asin(c + d*x)/3 + 2*b**3*c*e**2*x*sqrt(-c**2
 - 2*c*d*x - d**2*x**2 + 1)*asin(c + d*x)**2/3 - 4*b**3*c*e**2*x*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/27 - 4*
b**3*c*e**2*asin(c + d*x)/(3*d) + b**3*d**2*e**2*x**3*asin(c + d*x)**3/3 - 2*b**3*d**2*e**2*x**3*asin(c + d*x)
/9 + b**3*d*e**2*x**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)*asin(c + d*x)**2/3 - 2*b**3*d*e**2*x**2*sqrt(-c**2
 - 2*c*d*x - d**2*x**2 + 1)/27 - 4*b**3*e**2*x*asin(c + d*x)/3 + 2*b**3*e**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2
+ 1)*asin(c + d*x)**2/(3*d) - 40*b**3*e**2*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/(27*d), Ne(d, 0)), (c**2*e**2
*x*(a + b*asin(c))**3, True))

________________________________________________________________________________________

Giac [B]  time = 1.33241, size = 655, normalized size = 2.79 \begin{align*} \frac{{\left ({\left (d x + c\right )}^{2} - 1\right )}{\left (d x + c\right )} b^{3} \arcsin \left (d x + c\right )^{3} e^{2}}{3 \, d} + \frac{{\left ({\left (d x + c\right )}^{2} - 1\right )}{\left (d x + c\right )} a b^{2} \arcsin \left (d x + c\right )^{2} e^{2}}{d} + \frac{{\left (d x + c\right )} b^{3} \arcsin \left (d x + c\right )^{3} e^{2}}{3 \, d} - \frac{{\left (-{\left (d x + c\right )}^{2} + 1\right )}^{\frac{3}{2}} b^{3} \arcsin \left (d x + c\right )^{2} e^{2}}{3 \, d} + \frac{{\left (d x + c\right )}^{3} a^{3} e^{2}}{3 \, d} + \frac{{\left ({\left (d x + c\right )}^{2} - 1\right )}{\left (d x + c\right )} a^{2} b \arcsin \left (d x + c\right ) e^{2}}{d} - \frac{2 \,{\left ({\left (d x + c\right )}^{2} - 1\right )}{\left (d x + c\right )} b^{3} \arcsin \left (d x + c\right ) e^{2}}{9 \, d} + \frac{{\left (d x + c\right )} a b^{2} \arcsin \left (d x + c\right )^{2} e^{2}}{d} - \frac{2 \,{\left (-{\left (d x + c\right )}^{2} + 1\right )}^{\frac{3}{2}} a b^{2} \arcsin \left (d x + c\right ) e^{2}}{3 \, d} + \frac{\sqrt{-{\left (d x + c\right )}^{2} + 1} b^{3} \arcsin \left (d x + c\right )^{2} e^{2}}{d} - \frac{2 \,{\left ({\left (d x + c\right )}^{2} - 1\right )}{\left (d x + c\right )} a b^{2} e^{2}}{9 \, d} + \frac{{\left (d x + c\right )} a^{2} b \arcsin \left (d x + c\right ) e^{2}}{d} - \frac{14 \,{\left (d x + c\right )} b^{3} \arcsin \left (d x + c\right ) e^{2}}{9 \, d} - \frac{{\left (-{\left (d x + c\right )}^{2} + 1\right )}^{\frac{3}{2}} a^{2} b e^{2}}{3 \, d} + \frac{2 \,{\left (-{\left (d x + c\right )}^{2} + 1\right )}^{\frac{3}{2}} b^{3} e^{2}}{27 \, d} + \frac{2 \, \sqrt{-{\left (d x + c\right )}^{2} + 1} a b^{2} \arcsin \left (d x + c\right ) e^{2}}{d} - \frac{14 \,{\left (d x + c\right )} a b^{2} e^{2}}{9 \, d} + \frac{\sqrt{-{\left (d x + c\right )}^{2} + 1} a^{2} b e^{2}}{d} - \frac{14 \, \sqrt{-{\left (d x + c\right )}^{2} + 1} b^{3} e^{2}}{9 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^3,x, algorithm="giac")

[Out]

1/3*((d*x + c)^2 - 1)*(d*x + c)*b^3*arcsin(d*x + c)^3*e^2/d + ((d*x + c)^2 - 1)*(d*x + c)*a*b^2*arcsin(d*x + c
)^2*e^2/d + 1/3*(d*x + c)*b^3*arcsin(d*x + c)^3*e^2/d - 1/3*(-(d*x + c)^2 + 1)^(3/2)*b^3*arcsin(d*x + c)^2*e^2
/d + 1/3*(d*x + c)^3*a^3*e^2/d + ((d*x + c)^2 - 1)*(d*x + c)*a^2*b*arcsin(d*x + c)*e^2/d - 2/9*((d*x + c)^2 -
1)*(d*x + c)*b^3*arcsin(d*x + c)*e^2/d + (d*x + c)*a*b^2*arcsin(d*x + c)^2*e^2/d - 2/3*(-(d*x + c)^2 + 1)^(3/2
)*a*b^2*arcsin(d*x + c)*e^2/d + sqrt(-(d*x + c)^2 + 1)*b^3*arcsin(d*x + c)^2*e^2/d - 2/9*((d*x + c)^2 - 1)*(d*
x + c)*a*b^2*e^2/d + (d*x + c)*a^2*b*arcsin(d*x + c)*e^2/d - 14/9*(d*x + c)*b^3*arcsin(d*x + c)*e^2/d - 1/3*(-
(d*x + c)^2 + 1)^(3/2)*a^2*b*e^2/d + 2/27*(-(d*x + c)^2 + 1)^(3/2)*b^3*e^2/d + 2*sqrt(-(d*x + c)^2 + 1)*a*b^2*
arcsin(d*x + c)*e^2/d - 14/9*(d*x + c)*a*b^2*e^2/d + sqrt(-(d*x + c)^2 + 1)*a^2*b*e^2/d - 14/9*sqrt(-(d*x + c)
^2 + 1)*b^3*e^2/d