3.19 \(\int \frac{1}{a+b \sin ^{-1}(c x)} \, dx\)

Optimal. Leaf size=53 \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b c}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b c} \]

[Out]

(Cos[a/b]*CosIntegral[(a + b*ArcSin[c*x])/b])/(b*c) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c*x])/b])/(b*c)

________________________________________________________________________________________

Rubi [A]  time = 0.0655422, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {4623, 3303, 3299, 3302} \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b c}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])^(-1),x]

[Out]

(Cos[a/b]*CosIntegral[(a + b*ArcSin[c*x])/b])/(b*c) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c*x])/b])/(b*c)

Rule 4623

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[a/b - x/b], x], x, a
 + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{1}{a+b \sin ^{-1}(c x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}-\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}\\ &=\frac{\cos \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}+\frac{\sin \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}\\ &=\frac{\cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b c}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b c}\\ \end{align*}

Mathematica [A]  time = 0.0250106, size = 44, normalized size = 0.83 \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )+\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])^(-1),x]

[Out]

(Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]] + Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]])/(b*c)

________________________________________________________________________________________

Maple [A]  time = 0., size = 48, normalized size = 0.9 \begin{align*}{\frac{1}{c} \left ({\frac{1}{b}{\it Si} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \sin \left ({\frac{a}{b}} \right ) }+{\frac{1}{b}{\it Ci} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \cos \left ({\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsin(c*x)),x)

[Out]

1/c*(Si(arcsin(c*x)+a/b)*sin(a/b)/b+Ci(arcsin(c*x)+a/b)*cos(a/b)/b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{b \arcsin \left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

integrate(1/(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b \arcsin \left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral(1/(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{a + b \operatorname{asin}{\left (c x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asin(c*x)),x)

[Out]

Integral(1/(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.25566, size = 66, normalized size = 1.25 \begin{align*} \frac{\cos \left (\frac{a}{b}\right ) \operatorname{Ci}\left (\frac{a}{b} + \arcsin \left (c x\right )\right )}{b c} + \frac{\sin \left (\frac{a}{b}\right ) \operatorname{Si}\left (\frac{a}{b} + \arcsin \left (c x\right )\right )}{b c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b*c) + sin(a/b)*sin_integral(a/b + arcsin(c*x))/(b*c)