3.16 \(\int \frac{(d+e x)^3}{a+b \sin ^{-1}(c x)} \, dx\)

Optimal. Leaf size=393 \[ -\frac{3 d^2 e \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{2 b c^2}+\frac{3 d e^2 \cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \cos \left (\frac{3 a}{b}\right ) \text{CosIntegral}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^3}-\frac{e^3 \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{4 b c^4}+\frac{e^3 \sin \left (\frac{4 a}{b}\right ) \text{CosIntegral}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{8 b c^4}+\frac{3 d^2 e \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{2 b c^2}+\frac{3 d e^2 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^3}+\frac{e^3 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{4 b c^4}-\frac{e^3 \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{8 b c^4}+\frac{d^3 \cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{d^3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c} \]

[Out]

(d^3*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]])/(b*c) + (3*d*e^2*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]])/(4*b*c
^3) - (3*d*e^2*Cos[(3*a)/b]*CosIntegral[(3*a)/b + 3*ArcSin[c*x]])/(4*b*c^3) - (3*d^2*e*CosIntegral[(2*a)/b + 2
*ArcSin[c*x]]*Sin[(2*a)/b])/(2*b*c^2) - (e^3*CosIntegral[(2*a)/b + 2*ArcSin[c*x]]*Sin[(2*a)/b])/(4*b*c^4) + (e
^3*CosIntegral[(4*a)/b + 4*ArcSin[c*x]]*Sin[(4*a)/b])/(8*b*c^4) + (d^3*Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]]
)/(b*c) + (3*d*e^2*Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]])/(4*b*c^3) + (3*d^2*e*Cos[(2*a)/b]*SinIntegral[(2*a
)/b + 2*ArcSin[c*x]])/(2*b*c^2) + (e^3*Cos[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSin[c*x]])/(4*b*c^4) - (3*d*e^2
*Sin[(3*a)/b]*SinIntegral[(3*a)/b + 3*ArcSin[c*x]])/(4*b*c^3) - (e^3*Cos[(4*a)/b]*SinIntegral[(4*a)/b + 4*ArcS
in[c*x]])/(8*b*c^4)

________________________________________________________________________________________

Rubi [A]  time = 1.1335, antiderivative size = 393, normalized size of antiderivative = 1., number of steps used = 27, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {4747, 6742, 3303, 3299, 3302, 4406, 12} \[ -\frac{3 d^2 e \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{2 b c^2}+\frac{3 d e^2 \cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \cos \left (\frac{3 a}{b}\right ) \text{CosIntegral}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^3}-\frac{e^3 \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{4 b c^4}+\frac{e^3 \sin \left (\frac{4 a}{b}\right ) \text{CosIntegral}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{8 b c^4}+\frac{3 d^2 e \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{2 b c^2}+\frac{3 d e^2 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^3}+\frac{e^3 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{4 b c^4}-\frac{e^3 \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{8 b c^4}+\frac{d^3 \cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{d^3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3/(a + b*ArcSin[c*x]),x]

[Out]

(d^3*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]])/(b*c) + (3*d*e^2*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]])/(4*b*c
^3) - (3*d*e^2*Cos[(3*a)/b]*CosIntegral[(3*a)/b + 3*ArcSin[c*x]])/(4*b*c^3) - (3*d^2*e*CosIntegral[(2*a)/b + 2
*ArcSin[c*x]]*Sin[(2*a)/b])/(2*b*c^2) - (e^3*CosIntegral[(2*a)/b + 2*ArcSin[c*x]]*Sin[(2*a)/b])/(4*b*c^4) + (e
^3*CosIntegral[(4*a)/b + 4*ArcSin[c*x]]*Sin[(4*a)/b])/(8*b*c^4) + (d^3*Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]]
)/(b*c) + (3*d*e^2*Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]])/(4*b*c^3) + (3*d^2*e*Cos[(2*a)/b]*SinIntegral[(2*a
)/b + 2*ArcSin[c*x]])/(2*b*c^2) + (e^3*Cos[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSin[c*x]])/(4*b*c^4) - (3*d*e^2
*Sin[(3*a)/b]*SinIntegral[(3*a)/b + 3*ArcSin[c*x]])/(4*b*c^3) - (e^3*Cos[(4*a)/b]*SinIntegral[(4*a)/b + 4*ArcS
in[c*x]])/(8*b*c^4)

Rule 4747

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[I
nt[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0
]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

\begin{align*} \int \frac{(d+e x)^3}{a+b \sin ^{-1}(c x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cos (x) (c d+e \sin (x))^3}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c^4}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{c^3 d^3 \cos (x)}{a+b x}+\frac{3 c^2 d^2 e \cos (x) \sin (x)}{a+b x}+\frac{3 c d e^2 \cos (x) \sin ^2(x)}{a+b x}+\frac{e^3 \cos (x) \sin ^3(x)}{a+b x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^4}\\ &=\frac{d^3 \operatorname{Subst}\left (\int \frac{\cos (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c}+\frac{\left (3 d^2 e\right ) \operatorname{Subst}\left (\int \frac{\cos (x) \sin (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c^2}+\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \frac{\cos (x) \sin ^2(x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c^3}+\frac{e^3 \operatorname{Subst}\left (\int \frac{\cos (x) \sin ^3(x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c^4}\\ &=\frac{\left (3 d^2 e\right ) \operatorname{Subst}\left (\int \frac{\sin (2 x)}{2 (a+b x)} \, dx,x,\sin ^{-1}(c x)\right )}{c^2}+\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \left (\frac{\cos (x)}{4 (a+b x)}-\frac{\cos (3 x)}{4 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^3}+\frac{e^3 \operatorname{Subst}\left (\int \left (\frac{\sin (2 x)}{4 (a+b x)}-\frac{\sin (4 x)}{8 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^4}+\frac{\left (d^3 \cos \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c}+\frac{\left (d^3 \sin \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c}\\ &=\frac{d^3 \cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{d^3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{\left (3 d^2 e\right ) \operatorname{Subst}\left (\int \frac{\sin (2 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{2 c^2}+\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \frac{\cos (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \frac{\cos (3 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac{e^3 \operatorname{Subst}\left (\int \frac{\sin (4 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{8 c^4}+\frac{e^3 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}\\ &=\frac{d^3 \cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{d^3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{\left (3 d e^2 \cos \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}+\frac{\left (3 d^2 e \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{2 c^2}+\frac{\left (e^3 \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}-\frac{\left (3 d e^2 \cos \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac{\left (e^3 \cos \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{8 c^4}+\frac{\left (3 d e^2 \sin \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac{\left (3 d^2 e \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{2 c^2}-\frac{\left (e^3 \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}-\frac{\left (3 d e^2 \sin \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}+\frac{\left (e^3 \sin \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{8 c^4}\\ &=\frac{d^3 \cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{3 d e^2 \cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \cos \left (\frac{3 a}{b}\right ) \text{Ci}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d^2 e \text{Ci}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right ) \sin \left (\frac{2 a}{b}\right )}{2 b c^2}-\frac{e^3 \text{Ci}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right ) \sin \left (\frac{2 a}{b}\right )}{4 b c^4}+\frac{e^3 \text{Ci}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right ) \sin \left (\frac{4 a}{b}\right )}{8 b c^4}+\frac{d^3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{b c}+\frac{3 d e^2 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b c^3}+\frac{3 d^2 e \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{2 b c^2}+\frac{e^3 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{4 b c^4}-\frac{3 d e^2 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^3}-\frac{e^3 \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{8 b c^4}\\ \end{align*}

Mathematica [A]  time = 0.749604, size = 304, normalized size = 0.77 \[ \frac{3 d^2 e \left (\cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )-\sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )\right )}{2 b c^2}+\frac{3 d e^2 \left (\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )-\cos \left (\frac{3 a}{b}\right ) \text{CosIntegral}\left (3 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )-\sin \left (\frac{3 a}{b}\right ) \text{Si}\left (3 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )\right )}{4 b c^3}+\frac{e^3 \left (-2 \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (2 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+\sin \left (\frac{4 a}{b}\right ) \text{CosIntegral}\left (4 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+2 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (2 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )-\cos \left (\frac{4 a}{b}\right ) \text{Si}\left (4 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )\right )}{8 b c^4}+\frac{d^3 \left (\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )+\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3/(a + b*ArcSin[c*x]),x]

[Out]

(d^3*(Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]] + Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]]))/(b*c) + (3*d*e^2*(Co
s[a/b]*CosIntegral[a/b + ArcSin[c*x]] - Cos[(3*a)/b]*CosIntegral[3*(a/b + ArcSin[c*x])] + Sin[a/b]*SinIntegral
[a/b + ArcSin[c*x]] - Sin[(3*a)/b]*SinIntegral[3*(a/b + ArcSin[c*x])]))/(4*b*c^3) + (e^3*(-2*CosIntegral[2*(a/
b + ArcSin[c*x])]*Sin[(2*a)/b] + CosIntegral[4*(a/b + ArcSin[c*x])]*Sin[(4*a)/b] + 2*Cos[(2*a)/b]*SinIntegral[
2*(a/b + ArcSin[c*x])] - Cos[(4*a)/b]*SinIntegral[4*(a/b + ArcSin[c*x])]))/(8*b*c^4) + (3*d^2*e*(-(CosIntegral
[(2*a)/b + 2*ArcSin[c*x]]*Sin[(2*a)/b]) + Cos[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSin[c*x]]))/(2*b*c^2)

________________________________________________________________________________________

Maple [A]  time = 0.064, size = 327, normalized size = 0.8 \begin{align*}{\frac{1}{8\,{c}^{4}b} \left ( 8\,{\it Si} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \sin \left ({\frac{a}{b}} \right ){c}^{3}{d}^{3}+8\,{\it Ci} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \cos \left ({\frac{a}{b}} \right ){c}^{3}{d}^{3}+12\,{\it Si} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \cos \left ( 2\,{\frac{a}{b}} \right ){c}^{2}{d}^{2}e-12\,{\it Ci} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \sin \left ( 2\,{\frac{a}{b}} \right ){c}^{2}{d}^{2}e-6\,{\it Si} \left ( 3\,\arcsin \left ( cx \right ) +3\,{\frac{a}{b}} \right ) \sin \left ( 3\,{\frac{a}{b}} \right ) cd{e}^{2}-6\,{\it Ci} \left ( 3\,\arcsin \left ( cx \right ) +3\,{\frac{a}{b}} \right ) \cos \left ( 3\,{\frac{a}{b}} \right ) cd{e}^{2}+6\,{\it Si} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \sin \left ({\frac{a}{b}} \right ) cd{e}^{2}+6\,{\it Ci} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \cos \left ({\frac{a}{b}} \right ) cd{e}^{2}+2\,{\it Si} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \cos \left ( 2\,{\frac{a}{b}} \right ){e}^{3}+{\it Ci} \left ( 4\,\arcsin \left ( cx \right ) +4\,{\frac{a}{b}} \right ) \sin \left ( 4\,{\frac{a}{b}} \right ){e}^{3}-2\,{\it Ci} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \sin \left ( 2\,{\frac{a}{b}} \right ){e}^{3}-\cos \left ( 4\,{\frac{a}{b}} \right ){\it Si} \left ( 4\,\arcsin \left ( cx \right ) +4\,{\frac{a}{b}} \right ){e}^{3} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(a+b*arcsin(c*x)),x)

[Out]

1/8/c^4*(8*Si(arcsin(c*x)+a/b)*sin(a/b)*c^3*d^3+8*Ci(arcsin(c*x)+a/b)*cos(a/b)*c^3*d^3+12*Si(2*arcsin(c*x)+2*a
/b)*cos(2*a/b)*c^2*d^2*e-12*Ci(2*arcsin(c*x)+2*a/b)*sin(2*a/b)*c^2*d^2*e-6*Si(3*arcsin(c*x)+3*a/b)*sin(3*a/b)*
c*d*e^2-6*Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*c*d*e^2+6*Si(arcsin(c*x)+a/b)*sin(a/b)*c*d*e^2+6*Ci(arcsin(c*x)+a
/b)*cos(a/b)*c*d*e^2+2*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*e^3+Ci(4*arcsin(c*x)+4*a/b)*sin(4*a/b)*e^3-2*Ci(2*ar
csin(c*x)+2*a/b)*sin(2*a/b)*e^3-cos(4*a/b)*Si(4*arcsin(c*x)+4*a/b)*e^3)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{3}}{b \arcsin \left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

integrate((e*x + d)^3/(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}}{b \arcsin \left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)/(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{3}}{a + b \operatorname{asin}{\left (c x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(a+b*asin(c*x)),x)

[Out]

Integral((d + e*x)**3/(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.37742, size = 807, normalized size = 2.05 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

d^3*cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b*c) - 3*d^2*cos(a/b)*cos_integral(2*a/b + 2*arcsin(c*x))*e*sin(
a/b)/(b*c^2) + 3*d^2*cos(a/b)^2*e*sin_integral(2*a/b + 2*arcsin(c*x))/(b*c^2) + d^3*sin(a/b)*sin_integral(a/b
+ arcsin(c*x))/(b*c) - 3*d*cos(a/b)^3*cos_integral(3*a/b + 3*arcsin(c*x))*e^2/(b*c^3) - 3*d*cos(a/b)^2*e^2*sin
(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b*c^3) + cos(a/b)^3*cos_integral(4*a/b + 4*arcsin(c*x))*e^3*sin(a/b
)/(b*c^4) - cos(a/b)^4*e^3*sin_integral(4*a/b + 4*arcsin(c*x))/(b*c^4) - 3/2*d^2*e*sin_integral(2*a/b + 2*arcs
in(c*x))/(b*c^2) + 9/4*d*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c*x))*e^2/(b*c^3) + 3/4*d*cos(a/b)*cos_integra
l(a/b + arcsin(c*x))*e^2/(b*c^3) + 3/4*d*e^2*sin(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b*c^3) + 3/4*d*e^2*
sin(a/b)*sin_integral(a/b + arcsin(c*x))/(b*c^3) - 1/2*cos(a/b)*cos_integral(4*a/b + 4*arcsin(c*x))*e^3*sin(a/
b)/(b*c^4) - 1/2*cos(a/b)*cos_integral(2*a/b + 2*arcsin(c*x))*e^3*sin(a/b)/(b*c^4) + cos(a/b)^2*e^3*sin_integr
al(4*a/b + 4*arcsin(c*x))/(b*c^4) + 1/2*cos(a/b)^2*e^3*sin_integral(2*a/b + 2*arcsin(c*x))/(b*c^4) - 1/8*e^3*s
in_integral(4*a/b + 4*arcsin(c*x))/(b*c^4) - 1/4*e^3*sin_integral(2*a/b + 2*arcsin(c*x))/(b*c^4)