3.127 \(\int \frac{\sin ^{-1}(a+b x)}{x^2} \, dx\)

Optimal. Leaf size=64 \[ -\frac{b \tanh ^{-1}\left (\frac{1-a (a+b x)}{\sqrt{1-a^2} \sqrt{1-(a+b x)^2}}\right )}{\sqrt{1-a^2}}-\frac{\sin ^{-1}(a+b x)}{x} \]

[Out]

-(ArcSin[a + b*x]/x) - (b*ArcTanh[(1 - a*(a + b*x))/(Sqrt[1 - a^2]*Sqrt[1 - (a + b*x)^2])])/Sqrt[1 - a^2]

________________________________________________________________________________________

Rubi [A]  time = 0.0754341, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {4805, 4743, 725, 206} \[ -\frac{b \tanh ^{-1}\left (\frac{1-a (a+b x)}{\sqrt{1-a^2} \sqrt{1-(a+b x)^2}}\right )}{\sqrt{1-a^2}}-\frac{\sin ^{-1}(a+b x)}{x} \]

Antiderivative was successfully verified.

[In]

Int[ArcSin[a + b*x]/x^2,x]

[Out]

-(ArcSin[a + b*x]/x) - (b*ArcTanh[(1 - a*(a + b*x))/(Sqrt[1 - a^2]*Sqrt[1 - (a + b*x)^2])])/Sqrt[1 - a^2]

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 4743

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*ArcSin[c*x])^n)/(e*(m + 1)), x] - Dist[(b*c*n)/(e*(m + 1)), Int[((d + e*x)^(m + 1)*(a + b*ArcSin[c*x])^(
n - 1))/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sin ^{-1}(a+b x)}{x^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sin ^{-1}(x)}{\left (-\frac{a}{b}+\frac{x}{b}\right )^2} \, dx,x,a+b x\right )}{b}\\ &=-\frac{\sin ^{-1}(a+b x)}{x}+\operatorname{Subst}\left (\int \frac{1}{\left (-\frac{a}{b}+\frac{x}{b}\right ) \sqrt{1-x^2}} \, dx,x,a+b x\right )\\ &=-\frac{\sin ^{-1}(a+b x)}{x}-\operatorname{Subst}\left (\int \frac{1}{\frac{1}{b^2}-\frac{a^2}{b^2}-x^2} \, dx,x,\frac{\frac{1}{b}-\frac{a (a+b x)}{b}}{\sqrt{1-(a+b x)^2}}\right )\\ &=-\frac{\sin ^{-1}(a+b x)}{x}-\frac{b \tanh ^{-1}\left (\frac{b \left (\frac{1}{b}-\frac{a (a+b x)}{b}\right )}{\sqrt{1-a^2} \sqrt{1-(a+b x)^2}}\right )}{\sqrt{1-a^2}}\\ \end{align*}

Mathematica [A]  time = 0.04984, size = 66, normalized size = 1.03 \[ -\frac{b \tanh ^{-1}\left (\frac{-a^2-a b x+1}{\sqrt{1-a^2} \sqrt{1-(a+b x)^2}}\right )}{\sqrt{1-a^2}}-\frac{\sin ^{-1}(a+b x)}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSin[a + b*x]/x^2,x]

[Out]

-(ArcSin[a + b*x]/x) - (b*ArcTanh[(1 - a^2 - a*b*x)/(Sqrt[1 - a^2]*Sqrt[1 - (a + b*x)^2])])/Sqrt[1 - a^2]

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 78, normalized size = 1.2 \begin{align*} -{\frac{\arcsin \left ( bx+a \right ) }{x}}-{b\ln \left ({\frac{1}{bx} \left ( -2\,{a}^{2}+2-2\,xab+2\,\sqrt{-{a}^{2}+1}\sqrt{-{b}^{2}{x}^{2}-2\,xab-{a}^{2}+1} \right ) } \right ){\frac{1}{\sqrt{-{a}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsin(b*x+a)/x^2,x)

[Out]

-arcsin(b*x+a)/x-b/(-a^2+1)^(1/2)*ln((-2*a^2+2-2*x*a*b+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/b/x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(b*x+a)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.10816, size = 554, normalized size = 8.66 \begin{align*} \left [-\frac{\sqrt{-a^{2} + 1} b x \log \left (\frac{{\left (2 \, a^{2} - 1\right )} b^{2} x^{2} + 2 \, a^{4} + 4 \,{\left (a^{3} - a\right )} b x + 2 \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}{\left (a b x + a^{2} - 1\right )} \sqrt{-a^{2} + 1} - 4 \, a^{2} + 2}{x^{2}}\right ) + 2 \,{\left (a^{2} - 1\right )} \arcsin \left (b x + a\right )}{2 \,{\left (a^{2} - 1\right )} x}, \frac{\sqrt{a^{2} - 1} b x \arctan \left (\frac{\sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}{\left (a b x + a^{2} - 1\right )} \sqrt{a^{2} - 1}}{{\left (a^{2} - 1\right )} b^{2} x^{2} + a^{4} + 2 \,{\left (a^{3} - a\right )} b x - 2 \, a^{2} + 1}\right ) -{\left (a^{2} - 1\right )} \arcsin \left (b x + a\right )}{{\left (a^{2} - 1\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(b*x+a)/x^2,x, algorithm="fricas")

[Out]

[-1/2*(sqrt(-a^2 + 1)*b*x*log(((2*a^2 - 1)*b^2*x^2 + 2*a^4 + 4*(a^3 - a)*b*x + 2*sqrt(-b^2*x^2 - 2*a*b*x - a^2
 + 1)*(a*b*x + a^2 - 1)*sqrt(-a^2 + 1) - 4*a^2 + 2)/x^2) + 2*(a^2 - 1)*arcsin(b*x + a))/((a^2 - 1)*x), (sqrt(a
^2 - 1)*b*x*arctan(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a*b*x + a^2 - 1)*sqrt(a^2 - 1)/((a^2 - 1)*b^2*x^2 + a^4
 + 2*(a^3 - a)*b*x - 2*a^2 + 1)) - (a^2 - 1)*arcsin(b*x + a))/((a^2 - 1)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{asin}{\left (a + b x \right )}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asin(b*x+a)/x**2,x)

[Out]

Integral(asin(a + b*x)/x**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.21543, size = 107, normalized size = 1.67 \begin{align*} \frac{2 \, b^{2} \arctan \left (\frac{\frac{{\left (\sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}{\left | b \right |} + b\right )} a}{b^{2} x + a b} - 1}{\sqrt{a^{2} - 1}}\right )}{\sqrt{a^{2} - 1}{\left | b \right |}} - \frac{\arcsin \left (b x + a\right )}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(b*x+a)/x^2,x, algorithm="giac")

[Out]

2*b^2*arctan(((sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)*a/(b^2*x + a*b) - 1)/sqrt(a^2 - 1))/(sqrt(a^2 -
1)*abs(b)) - arcsin(b*x + a)/x