3.629 \(\int \frac{\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx\)

Optimal. Leaf size=93 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{2} \sqrt{c \sec (2 a+2 b x)-c}}\right )}{4 \sqrt{2} b c^{3/2}}-\frac{\tan (2 a+2 b x)}{4 b (c \sec (2 a+2 b x)-c)^{3/2}} \]

[Out]

ArcTanh[(Sqrt[c]*Tan[2*a + 2*b*x])/(Sqrt[2]*Sqrt[-c + c*Sec[2*a + 2*b*x]])]/(4*Sqrt[2]*b*c^(3/2)) - Tan[2*a +
2*b*x]/(4*b*(-c + c*Sec[2*a + 2*b*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.12124, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {4397, 3796, 3795, 207} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{2} \sqrt{c \sec (2 a+2 b x)-c}}\right )}{4 \sqrt{2} b c^{3/2}}-\frac{\tan (2 a+2 b x)}{4 b (c \sec (2 a+2 b x)-c)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[2*(a + b*x)]/(c*Tan[a + b*x]*Tan[2*(a + b*x)])^(3/2),x]

[Out]

ArcTanh[(Sqrt[c]*Tan[2*a + 2*b*x])/(Sqrt[2]*Sqrt[-c + c*Sec[2*a + 2*b*x]])]/(4*Sqrt[2]*b*c^(3/2)) - Tan[2*a +
2*b*x]/(4*b*(-c + c*Sec[2*a + 2*b*x])^(3/2))

Rule 4397

Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]

Rule 3796

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a
+ b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx &=\int \frac{\sec (2 a+2 b x)}{(-c+c \sec (2 a+2 b x))^{3/2}} \, dx\\ &=-\frac{\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}}-\frac{\int \frac{\sec (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}} \, dx}{4 c}\\ &=-\frac{\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-2 c+x^2} \, dx,x,-\frac{c \tan (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}}\right )}{4 b c}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{2} \sqrt{-c+c \sec (2 a+2 b x)}}\right )}{4 \sqrt{2} b c^{3/2}}-\frac{\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.651006, size = 83, normalized size = 0.89 \[ -\frac{\tan (2 (a+b x)) \left (\sin ^2(a+b x) \tan ^{-1}\left (\sqrt{\tan ^2(a+b x)-1}\right ) \sqrt{\tan ^2(a+b x)-1} \sec (2 (a+b x))+1\right )}{4 b (c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[2*(a + b*x)]/(c*Tan[a + b*x]*Tan[2*(a + b*x)])^(3/2),x]

[Out]

-((1 + ArcTan[Sqrt[-1 + Tan[a + b*x]^2]]*Sec[2*(a + b*x)]*Sin[a + b*x]^2*Sqrt[-1 + Tan[a + b*x]^2])*Tan[2*(a +
 b*x)])/(4*b*(c*Tan[a + b*x]*Tan[2*(a + b*x)])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.406, size = 599, normalized size = 6.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x)

[Out]

1/32*2^(1/2)/b*4^(1/2)*(-1+cos(b*x+a))^3*(2*4^(1/2)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(3/2)*cos(b*x+a)^2+4
*4^(1/2)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(3/2)*cos(b*x+a)+2*4^(1/2)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2
)^(3/2)-6*cos(b*x+a)^2*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)-cos(b*x+a)^2*ln(-2*(cos(b*x+a)^2*((2*cos(b*
x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)-2*cos(b*x+a)^2+cos(b*x+a)-((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+1)/sin
(b*x+a)^2)-arctanh(1/2*4^(1/2)*(2*cos(b*x+a)^2-3*cos(b*x+a)+1)/sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)
^2)^(1/2))*cos(b*x+a)^2+2*cos(b*x+a)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+4*((2*cos(b*x+a)^2-1)/(cos(b*
x+a)+1)^2)^(1/2)+ln(-2*(cos(b*x+a)^2*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)-2*cos(b*x+a)^2+cos(b*x+a)-((2
*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+1)/sin(b*x+a)^2)+arctanh(1/2*4^(1/2)*(2*cos(b*x+a)^2-3*cos(b*x+a)+1)/
sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)))/(c*sin(b*x+a)^2/(2*cos(b*x+a)^2-1))^(3/2)/sin(b*x+a
)^5/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (2 \, b x + 2 \, a\right )}{\left (c \tan \left (2 \, b x + 2 \, a\right ) \tan \left (b x + a\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(2*b*x + 2*a)/(c*tan(2*b*x + 2*a)*tan(b*x + a))^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.98484, size = 699, normalized size = 7.52 \begin{align*} \left [\frac{\sqrt{2} \sqrt{c} \log \left (\frac{c \tan \left (b x + a\right )^{3} + 2 \, \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt{c} - 2 \, c \tan \left (b x + a\right )}{\tan \left (b x + a\right )^{3}}\right ) \tan \left (b x + a\right )^{3} + 2 \, \sqrt{2} \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )}}{16 \, b c^{2} \tan \left (b x + a\right )^{3}}, \frac{\sqrt{2} \sqrt{-c} \arctan \left (\frac{\sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt{-c}}{c \tan \left (b x + a\right )}\right ) \tan \left (b x + a\right )^{3} + \sqrt{2} \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )}}{8 \, b c^{2} \tan \left (b x + a\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x, algorithm="fricas")

[Out]

[1/16*(sqrt(2)*sqrt(c)*log((c*tan(b*x + a)^3 + 2*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2
- 1)*sqrt(c) - 2*c*tan(b*x + a))/tan(b*x + a)^3)*tan(b*x + a)^3 + 2*sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x +
a)^2 - 1))*(tan(b*x + a)^2 - 1))/(b*c^2*tan(b*x + a)^3), 1/8*(sqrt(2)*sqrt(-c)*arctan(sqrt(-c*tan(b*x + a)^2/(
tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1)*sqrt(-c)/(c*tan(b*x + a)))*tan(b*x + a)^3 + sqrt(2)*sqrt(-c*tan(b*x
+ a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1))/(b*c^2*tan(b*x + a)^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError