3.624 \(\int \frac{\cos (2 (a+b x))}{\sqrt{c \tan (a+b x) \tan (2 (a+b x))}} \, dx\)

Optimal. Leaf size=138 \[ \frac{\sin (2 a+2 b x)}{2 b \sqrt{c \sec (2 a+2 b x)-c}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{c \sec (2 a+2 b x)-c}}\right )}{2 b \sqrt{c}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{2} \sqrt{c \sec (2 a+2 b x)-c}}\right )}{\sqrt{2} b \sqrt{c}} \]

[Out]

ArcTanh[(Sqrt[c]*Tan[2*a + 2*b*x])/Sqrt[-c + c*Sec[2*a + 2*b*x]]]/(2*b*Sqrt[c]) - ArcTanh[(Sqrt[c]*Tan[2*a + 2
*b*x])/(Sqrt[2]*Sqrt[-c + c*Sec[2*a + 2*b*x]])]/(Sqrt[2]*b*Sqrt[c]) + Sin[2*a + 2*b*x]/(2*b*Sqrt[-c + c*Sec[2*
a + 2*b*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.278831, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {4397, 3823, 3904, 3887, 481, 206} \[ \frac{\sin (2 a+2 b x)}{2 b \sqrt{c \sec (2 a+2 b x)-c}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{c \sec (2 a+2 b x)-c}}\right )}{2 b \sqrt{c}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{2} \sqrt{c \sec (2 a+2 b x)-c}}\right )}{\sqrt{2} b \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[2*(a + b*x)]/Sqrt[c*Tan[a + b*x]*Tan[2*(a + b*x)]],x]

[Out]

ArcTanh[(Sqrt[c]*Tan[2*a + 2*b*x])/Sqrt[-c + c*Sec[2*a + 2*b*x]]]/(2*b*Sqrt[c]) - ArcTanh[(Sqrt[c]*Tan[2*a + 2
*b*x])/(Sqrt[2]*Sqrt[-c + c*Sec[2*a + 2*b*x]])]/(Sqrt[2]*b*Sqrt[c]) + Sin[2*a + 2*b*x]/(2*b*Sqrt[-c + c*Sec[2*
a + 2*b*x]])

Rule 4397

Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]

Rule 3823

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(Cot[e
+ f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[1/(2*b*d*n), Int[((d*Csc[e + f*x])^(n + 1
)*(a + b*(2*n + 1)*Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b
^2, 0] && LtQ[n, 0] && IntegerQ[2*n]

Rule 3904

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(-(a*c))^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 481

Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> -Dist[(a*e^n)/(b*c -
a*d), Int[(e*x)^(m - n)/(a + b*x^n), x], x] + Dist[(c*e^n)/(b*c - a*d), Int[(e*x)^(m - n)/(c + d*x^n), x], x]
/; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (2 (a+b x))}{\sqrt{c \tan (a+b x) \tan (2 (a+b x))}} \, dx &=\int \frac{\cos (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}} \, dx\\ &=\frac{\sin (2 a+2 b x)}{2 b \sqrt{-c+c \sec (2 a+2 b x)}}-\frac{\int \frac{-c-c \sec (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}} \, dx}{2 c}\\ &=\frac{\sin (2 a+2 b x)}{2 b \sqrt{-c+c \sec (2 a+2 b x)}}+\frac{1}{2} c \int \frac{\tan ^2(2 a+2 b x)}{(-c+c \sec (2 a+2 b x))^{3/2}} \, dx\\ &=\frac{\sin (2 a+2 b x)}{2 b \sqrt{-c+c \sec (2 a+2 b x)}}-\frac{c \operatorname{Subst}\left (\int \frac{x^2}{\left (1-c x^2\right ) \left (2-c x^2\right )} \, dx,x,-\frac{\tan (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}}\right )}{2 b}\\ &=\frac{\sin (2 a+2 b x)}{2 b \sqrt{-c+c \sec (2 a+2 b x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,-\frac{\tan (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}}\right )}{2 b}+\frac{\operatorname{Subst}\left (\int \frac{1}{2-c x^2} \, dx,x,-\frac{\tan (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}}\right )}{b}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{-c+c \sec (2 a+2 b x)}}\right )}{2 b \sqrt{c}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \tan (2 a+2 b x)}{\sqrt{2} \sqrt{-c+c \sec (2 a+2 b x)}}\right )}{\sqrt{2} b \sqrt{c}}+\frac{\sin (2 a+2 b x)}{2 b \sqrt{-c+c \sec (2 a+2 b x)}}\\ \end{align*}

Mathematica [A]  time = 2.47319, size = 166, normalized size = 1.2 \[ \frac{\tan (a+b x) \left (\sqrt{2} \tanh ^{-1}\left (\frac{1}{2} \sqrt{2-2 \tan ^2(a+b x)}\right )-\tanh ^{-1}\left (\sqrt{1-\tan ^2(a+b x)}\right )+\sqrt{2} \cos ^2(a+b x) \sqrt{\frac{1}{\sec (2 (a+b x))+1}} \left (\tan ^{-1}\left (\sqrt{\tan ^2(a+b x)-1}\right ) \sqrt{\tan ^2(a+b x)-1} \sec (2 (a+b x))+2\right )\right )}{2 b \sqrt{1-\tan ^2(a+b x)} \sqrt{c \tan (a+b x) \tan (2 (a+b x))}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[2*(a + b*x)]/Sqrt[c*Tan[a + b*x]*Tan[2*(a + b*x)]],x]

[Out]

(Tan[a + b*x]*(Sqrt[2]*ArcTanh[Sqrt[2 - 2*Tan[a + b*x]^2]/2] - ArcTanh[Sqrt[1 - Tan[a + b*x]^2]] + Sqrt[2]*Cos
[a + b*x]^2*Sqrt[(1 + Sec[2*(a + b*x)])^(-1)]*(2 + ArcTan[Sqrt[-1 + Tan[a + b*x]^2]]*Sec[2*(a + b*x)]*Sqrt[-1
+ Tan[a + b*x]^2])))/(2*b*Sqrt[1 - Tan[a + b*x]^2]*Sqrt[c*Tan[a + b*x]*Tan[2*(a + b*x)]])

________________________________________________________________________________________

Maple [B]  time = 0.466, size = 1030, normalized size = 7.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x)

[Out]

1/16*2^(1/2)/b*4^(1/2)*(-1+cos(b*x+a))^2*(cos(b*x+a)^3*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(3/2)*4^(1/2)+4*4
^(1/2)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(3/2)*cos(b*x+a)^2+5*4^(1/2)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2
)^(3/2)*cos(b*x+a)+2*4^(1/2)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(3/2)-6*arctanh(1/2*2^(1/2)*cos(b*x+a)*4^(1
/2)*(-1+cos(b*x+a))/sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2))*cos(b*x+a)*2^(1/2)+6*cos(b*x+a)*
((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+4*ln(-2*(cos(b*x+a)^2*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)-
2*cos(b*x+a)^2+cos(b*x+a)-((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+1)/sin(b*x+a)^2)*cos(b*x+a)+4*arctanh(1/
2*4^(1/2)*(2*cos(b*x+a)^2-3*cos(b*x+a)+1)/sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2))*cos(b*x+a)
-6*2^(1/2)*arctanh(1/2*2^(1/2)*cos(b*x+a)*4^(1/2)*(-1+cos(b*x+a))/sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)
+1)^2)^(1/2))+4*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+4*ln(-2*(cos(b*x+a)^2*((2*cos(b*x+a)^2-1)/(cos(b*x
+a)+1)^2)^(1/2)-2*cos(b*x+a)^2+cos(b*x+a)-((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+1)/sin(b*x+a)^2)+4*arcta
nh(1/2*4^(1/2)*(2*cos(b*x+a)^2-3*cos(b*x+a)+1)/sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)))/((2*
cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)/(c*sin(b*x+a)^2/(2*cos(b*x+a)^2-1))^(1/2)/sin(b*x+a)^3+1/8*2^(1/2)/b*4
^(1/2)*(cos(b*x+a)+1)*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)*(c*(1-cos(b*x+a)^2)/(2*cos(b*x+a)^2-1))^(1/2
)*(2*2^(1/2)*arctanh(1/2*2^(1/2)*cos(b*x+a)*4^(1/2)*(-1+cos(b*x+a))/sin(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+
a)+1)^2)^(1/2))-ln(-2*(cos(b*x+a)^2*((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)-2*cos(b*x+a)^2+cos(b*x+a)-((2*
cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)+1)/sin(b*x+a)^2)-arctanh(1/2*4^(1/2)*(2*cos(b*x+a)^2-3*cos(b*x+a)+1)/s
in(b*x+a)^2/((2*cos(b*x+a)^2-1)/(cos(b*x+a)+1)^2)^(1/2)))/sin(b*x+a)/c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (2 \, b x + 2 \, a\right )}{\sqrt{c \tan \left (2 \, b x + 2 \, a\right ) \tan \left (b x + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(2*b*x + 2*a)/sqrt(c*tan(2*b*x + 2*a)*tan(b*x + a)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.2922, size = 1274, normalized size = 9.23 \begin{align*} \left [\frac{\sqrt{2}{\left (\tan \left (b x + a\right )^{3} + \tan \left (b x + a\right )\right )} \sqrt{c} \log \left (\frac{c \tan \left (b x + a\right )^{3} - 2 \, \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt{c} - 2 \, c \tan \left (b x + a\right )}{\tan \left (b x + a\right )^{3}}\right ) +{\left (\tan \left (b x + a\right )^{3} + \tan \left (b x + a\right )\right )} \sqrt{c} \log \left (\frac{c \tan \left (b x + a\right )^{3} + 2 \, \sqrt{2} \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt{c} - 3 \, c \tan \left (b x + a\right )}{\tan \left (b x + a\right )^{3} + \tan \left (b x + a\right )}\right ) - 2 \, \sqrt{2} \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )}}{4 \,{\left (b c \tan \left (b x + a\right )^{3} + b c \tan \left (b x + a\right )\right )}}, -\frac{\sqrt{2}{\left (\tan \left (b x + a\right )^{3} + \tan \left (b x + a\right )\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt{-c}}{c \tan \left (b x + a\right )}\right ) -{\left (\tan \left (b x + a\right )^{3} + \tan \left (b x + a\right )\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{2} \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt{-c}}{2 \, c \tan \left (b x + a\right )}\right ) + \sqrt{2} \sqrt{-\frac{c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}{\left (\tan \left (b x + a\right )^{2} - 1\right )}}{2 \,{\left (b c \tan \left (b x + a\right )^{3} + b c \tan \left (b x + a\right )\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(2)*(tan(b*x + a)^3 + tan(b*x + a))*sqrt(c)*log((c*tan(b*x + a)^3 - 2*sqrt(-c*tan(b*x + a)^2/(tan(b*
x + a)^2 - 1))*(tan(b*x + a)^2 - 1)*sqrt(c) - 2*c*tan(b*x + a))/tan(b*x + a)^3) + (tan(b*x + a)^3 + tan(b*x +
a))*sqrt(c)*log((c*tan(b*x + a)^3 + 2*sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1
)*sqrt(c) - 3*c*tan(b*x + a))/(tan(b*x + a)^3 + tan(b*x + a))) - 2*sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a
)^2 - 1))*(tan(b*x + a)^2 - 1))/(b*c*tan(b*x + a)^3 + b*c*tan(b*x + a)), -1/2*(sqrt(2)*(tan(b*x + a)^3 + tan(b
*x + a))*sqrt(-c)*arctan(sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1)*sqrt(-c)/(c*tan(b*x
 + a))) - (tan(b*x + a)^3 + tan(b*x + a))*sqrt(-c)*arctan(1/2*sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 -
 1))*(tan(b*x + a)^2 - 1)*sqrt(-c)/(c*tan(b*x + a))) + sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1))*(t
an(b*x + a)^2 - 1))/(b*c*tan(b*x + a)^3 + b*c*tan(b*x + a))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError