3.559 \(\int \frac{d+b e \cos (x)+c e \sin (x)}{\sqrt{a+b \cos (x)+c \sin (x)}} \, dx\)

Optimal. Leaf size=180 \[ \frac{2 (d-a e) \sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}} \text{EllipticF}\left (\frac{1}{2} \left (x-\tan ^{-1}(b,c)\right ),\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{\sqrt{a+b \cos (x)+c \sin (x)}}+\frac{2 e \sqrt{a+b \cos (x)+c \sin (x)} E\left (\frac{1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{\sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}}} \]

[Out]

(2*e*EllipticE[(x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[x] + c*Sin[x]])
/Sqrt[(a + b*Cos[x] + c*Sin[x])/(a + Sqrt[b^2 + c^2])] + (2*(d - a*e)*EllipticF[(x - ArcTan[b, c])/2, (2*Sqrt[
b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[x] + c*Sin[x])/(a + Sqrt[b^2 + c^2])])/Sqrt[a + b*Cos[x] +
c*Sin[x]]

________________________________________________________________________________________

Rubi [A]  time = 0.186792, antiderivative size = 180, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {3149, 3119, 2653, 3127, 2661} \[ \frac{2 (d-a e) \sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}} F\left (\frac{1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{\sqrt{a+b \cos (x)+c \sin (x)}}+\frac{2 e \sqrt{a+b \cos (x)+c \sin (x)} E\left (\frac{1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{\sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}}} \]

Antiderivative was successfully verified.

[In]

Int[(d + b*e*Cos[x] + c*e*Sin[x])/Sqrt[a + b*Cos[x] + c*Sin[x]],x]

[Out]

(2*e*EllipticE[(x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[x] + c*Sin[x]])
/Sqrt[(a + b*Cos[x] + c*Sin[x])/(a + Sqrt[b^2 + c^2])] + (2*(d - a*e)*EllipticF[(x - ArcTan[b, c])/2, (2*Sqrt[
b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[x] + c*Sin[x])/(a + Sqrt[b^2 + c^2])])/Sqrt[a + b*Cos[x] +
c*Sin[x]]

Rule 3149

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rule 3119

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3127

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], Int[1/Sqrt[
a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{d+b e \cos (x)+c e \sin (x)}{\sqrt{a+b \cos (x)+c \sin (x)}} \, dx &=e \int \sqrt{a+b \cos (x)+c \sin (x)} \, dx+(d-a e) \int \frac{1}{\sqrt{a+b \cos (x)+c \sin (x)}} \, dx\\ &=\frac{\left (e \sqrt{a+b \cos (x)+c \sin (x)}\right ) \int \sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}} \, dx}{\sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}}}+\frac{\left ((d-a e) \sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}}} \, dx}{\sqrt{a+b \cos (x)+c \sin (x)}}\\ &=\frac{2 e E\left (\frac{1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{a+b \cos (x)+c \sin (x)}}{\sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}}}+\frac{2 (d-a e) F\left (\frac{1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{\frac{a+b \cos (x)+c \sin (x)}{a+\sqrt{b^2+c^2}}}}{\sqrt{a+b \cos (x)+c \sin (x)}}\\ \end{align*}

Mathematica [C]  time = 6.26099, size = 1319, normalized size = 7.33 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + b*e*Cos[x] + c*e*Sin[x])/Sqrt[a + b*Cos[x] + c*Sin[x]],x]

[Out]

(2*b*e*Sqrt[a + b*Cos[x] + c*Sin[x]])/c + (2*d*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[x +
 ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan
[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c
^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)
/c^2]*Sin[x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]])/(-a
+ c*Sqrt[(b^2 + c^2)/c^2])])/(Sqrt[1 + b^2/c^2]*c) + (b^2*e*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqr
t[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c
^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[x - ArcTan[c/b]])/(b*
Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(a + b*Sqrt[(b
^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt
[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos
[x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]
*Cos[x - ArcTan[c/b]]]))/c + c*e*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcT
an[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]
])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*S
qrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b
*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - A
rcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]))/(b^2 +
c^2) - (c*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]])

________________________________________________________________________________________

Maple [B]  time = 6.956, size = 777, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+b*e*cos(x)+c*e*sin(x))/(a+b*cos(x)+c*sin(x))^(1/2),x)

[Out]

(-(-b^2*sin(x-arctan(-b,c))-c^2*sin(x-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(x-arctan(-b,c))^2/(b^2+c^2)^(1/2))^
(1/2)/(b^2+c^2)^(1/2)*(2*(b^2*e+c^2*e)*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(
b^2+c^2)^(1/2)))^(1/2)*((-sin(x-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(x-arctan(-
b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(x-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(x-arctan(-b,c))
+a))^(1/2)*((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))
^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-
a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))+2*d*(b^2+c^2)^(1/2)*(1/(b^2+c^2)^(
1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(x-arctan(-b,c))+1)*(b^2
+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(x-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(-
(-b^2*sin(x-arctan(-b,c))-c^2*sin(x-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(x-arctan(-b,c))^2/(b^2+c^2)^(1/2))^(1
/2)*EllipticF(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b
^2+c^2)^(1/2)))^(1/2)))/cos(x-arctan(-b,c))/((b^2*sin(x-arctan(-b,c))+c^2*sin(x-arctan(-b,c))+a*(b^2+c^2)^(1/2
))/(b^2+c^2)^(1/2))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b e \cos \left (x\right ) + c e \sin \left (x\right ) + d}{\sqrt{b \cos \left (x\right ) + c \sin \left (x\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+b*e*cos(x)+c*e*sin(x))/(a+b*cos(x)+c*sin(x))^(1/2),x, algorithm="maxima")

[Out]

integrate((b*e*cos(x) + c*e*sin(x) + d)/sqrt(b*cos(x) + c*sin(x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b e \cos \left (x\right ) + c e \sin \left (x\right ) + d}{\sqrt{b \cos \left (x\right ) + c \sin \left (x\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+b*e*cos(x)+c*e*sin(x))/(a+b*cos(x)+c*sin(x))^(1/2),x, algorithm="fricas")

[Out]

integral((b*e*cos(x) + c*e*sin(x) + d)/sqrt(b*cos(x) + c*sin(x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b e \cos{\left (x \right )} + c e \sin{\left (x \right )} + d}{\sqrt{a + b \cos{\left (x \right )} + c \sin{\left (x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+b*e*cos(x)+c*e*sin(x))/(a+b*cos(x)+c*sin(x))**(1/2),x)

[Out]

Integral((b*e*cos(x) + c*e*sin(x) + d)/sqrt(a + b*cos(x) + c*sin(x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b e \cos \left (x\right ) + c e \sin \left (x\right ) + d}{\sqrt{b \cos \left (x\right ) + c \sin \left (x\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+b*e*cos(x)+c*e*sin(x))/(a+b*cos(x)+c*sin(x))^(1/2),x, algorithm="giac")

[Out]

integrate((b*e*cos(x) + c*e*sin(x) + d)/sqrt(b*cos(x) + c*sin(x) + a), x)