3.554 \(\int \frac{A+B \cos (x)+C \sin (x)}{a+b \cos (x)-i b \sin (x)} \, dx\)

Optimal. Leaf size=103 \[ -\frac{i \left (a^2 (-(B+i C))+2 a A b-b^2 (B-i C)\right ) \log (a-i b \sin (x)+b \cos (x))}{2 a^2 b}+\frac{x (2 a A-b B+i b C)}{2 a^2}-\frac{(C+i B) (\cos (x)+i \sin (x))}{2 a} \]

[Out]

((2*a*A - b*B + I*b*C)*x)/(2*a^2) - ((I/2)*(2*a*A*b - b^2*(B - I*C) - a^2*(B + I*C))*Log[a + b*Cos[x] - I*b*Si
n[x]])/(a^2*b) - ((I*B + C)*(Cos[x] + I*Sin[x]))/(2*a)

________________________________________________________________________________________

Rubi [A]  time = 0.0732889, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.038, Rules used = {3130} \[ -\frac{i \left (a^2 (-(B+i C))+2 a A b-b^2 (B-i C)\right ) \log (a-i b \sin (x)+b \cos (x))}{2 a^2 b}+\frac{x (2 a A-b B+i b C)}{2 a^2}-\frac{(C+i B) (\cos (x)+i \sin (x))}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[x] + C*Sin[x])/(a + b*Cos[x] - I*b*Sin[x]),x]

[Out]

((2*a*A - b*B + I*b*C)*x)/(2*a^2) - ((I/2)*(2*a*A*b - b^2*(B - I*C) - a^2*(B + I*C))*Log[a + b*Cos[x] - I*b*Si
n[x]])/(a^2*b) - ((I*B + C)*(Cos[x] + I*Sin[x]))/(2*a)

Rule 3130

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/(cos[(d_.) + (e_.)*(x_)]*(b_.) + (
a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[((2*a*A - b*B - c*C)*x)/(2*a^2), x] + (-Simp[((b*B + c
*C)*(b*Cos[d + e*x] - c*Sin[d + e*x]))/(2*a*b*c*e), x] + Simp[((a^2*(b*B - c*C) - 2*a*A*b^2 + b^2*(b*B + c*C))
*Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*x], x]])/(2*a^2*b*c*e), x]) /; FreeQ[{a, b, c, d, e, A, B,
 C}, x] && EqQ[b^2 + c^2, 0]

Rubi steps

\begin{align*} \int \frac{A+B \cos (x)+C \sin (x)}{a+b \cos (x)-i b \sin (x)} \, dx &=\frac{(2 a A-b B+i b C) x}{2 a^2}-\frac{i \left (2 a A b-b^2 (B-i C)-a^2 (B+i C)\right ) \log (a+b \cos (x)-i b \sin (x))}{2 a^2 b}-\frac{(i B+C) (\cos (x)+i \sin (x))}{2 a}\\ \end{align*}

Mathematica [A]  time = 0.421403, size = 167, normalized size = 1.62 \[ \frac{\frac{\left (i a^2 (B+i C)-2 i a A b+b^2 (C+i B)\right ) \log \left (a^2+2 a b \cos (x)+b^2\right )}{b}+\frac{2 \left (a^2 (B+i C)-2 a A b+b^2 (B-i C)\right ) \tan ^{-1}\left (\frac{(a+b) \cot \left (\frac{x}{2}\right )}{a-b}\right )}{b}+x \left (\frac{a^2 (B+i C)}{b}+2 a A-b (B-i C)\right )+2 a (B-i C) \sin (x)-2 i a (B-i C) \cos (x)}{4 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[x] + C*Sin[x])/(a + b*Cos[x] - I*b*Sin[x]),x]

[Out]

((2*a*A - b*(B - I*C) + (a^2*(B + I*C))/b)*x + (2*(-2*a*A*b + b^2*(B - I*C) + a^2*(B + I*C))*ArcTan[((a + b)*C
ot[x/2])/(a - b)])/b - (2*I)*a*(B - I*C)*Cos[x] + (((-2*I)*a*A*b + I*a^2*(B + I*C) + b^2*(I*B + C))*Log[a^2 +
b^2 + 2*a*b*Cos[x]])/b + 2*a*(B - I*C)*Sin[x])/(4*a^2)

________________________________________________________________________________________

Maple [B]  time = 0.082, size = 475, normalized size = 4.6 \begin{align*}{\frac{{\frac{i}{2}}B}{-a+b}\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }+{\frac{B}{a} \left ( \tan \left ({\frac{x}{2}} \right ) +i \right ) ^{-1}}+{\frac{{\frac{i}{2}}{b}^{2}B}{{a}^{2} \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }+{\frac{iA}{-a+b}\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }-{\frac{bC}{2\,{a}^{2}}\ln \left ( \tan \left ({\frac{x}{2}} \right ) +i \right ) }+{\frac{Ca}{2\,b \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }-{\frac{C}{-2\,a+2\,b}\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }-{\frac{bC}{2\,a \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }+{\frac{{b}^{2}C}{2\,{a}^{2} \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }-{\frac{{\frac{i}{2}}aB}{b \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }-{\frac{iAb}{a \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }+{\frac{iA}{a}\ln \left ( \tan \left ({\frac{x}{2}} \right ) +i \right ) }-{\frac{{\frac{i}{2}}bB}{a \left ( -a+b \right ) }\ln \left ( ia+ib-a\tan \left ({\frac{x}{2}} \right ) +b\tan \left ({\frac{x}{2}} \right ) \right ) }-{\frac{iC}{a} \left ( \tan \left ({\frac{x}{2}} \right ) +i \right ) ^{-1}}-{\frac{{\frac{i}{2}}B}{b}\ln \left ( \tan \left ({\frac{x}{2}} \right ) -i \right ) }+{\frac{C}{2\,b}\ln \left ( \tan \left ({\frac{x}{2}} \right ) -i \right ) }-{\frac{{\frac{i}{2}}bB}{{a}^{2}}\ln \left ( \tan \left ({\frac{x}{2}} \right ) +i \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(x)+C*sin(x))/(a+b*cos(x)-I*b*sin(x)),x)

[Out]

1/2*I/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*B+B/a/(tan(1/2*x)+I)+1/2*I/a^2*b^2/(-a+b)*ln(I*a+I*b-a*tan(
1/2*x)+b*tan(1/2*x))*B+I/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*A-1/2/a^2*ln(tan(1/2*x)+I)*b*C+1/2*a/b/(
-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*C-1/2/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*C-1/2/a*b/(-a+b
)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*C+1/2/a^2*b^2/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*C-1/2*I*a/b
/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*B-I/a*b/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*A+I/a*ln(ta
n(1/2*x)+I)*A-1/2*I/a*b/(-a+b)*ln(I*a+I*b-a*tan(1/2*x)+b*tan(1/2*x))*B-I*C/a/(tan(1/2*x)+I)-1/2*I*B/b*ln(tan(1
/2*x)-I)+1/2*C/b*ln(tan(1/2*x)-I)-1/2*I/a^2*ln(tan(1/2*x)+I)*b*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(x)+C*sin(x))/(a+b*cos(x)-I*b*sin(x)),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [A]  time = 2.06735, size = 169, normalized size = 1.64 \begin{align*} \frac{{\left (B + i \, C\right )} a^{2} x +{\left (-i \, B - C\right )} a b e^{\left (i \, x\right )} +{\left ({\left (i \, B - C\right )} a^{2} - 2 i \, A a b +{\left (i \, B + C\right )} b^{2}\right )} \log \left (\frac{a e^{\left (i \, x\right )} + b}{a}\right )}{2 \, a^{2} b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(x)+C*sin(x))/(a+b*cos(x)-I*b*sin(x)),x, algorithm="fricas")

[Out]

1/2*((B + I*C)*a^2*x + (-I*B - C)*a*b*e^(I*x) + ((I*B - C)*a^2 - 2*I*A*a*b + (I*B + C)*b^2)*log((a*e^(I*x) + b
)/a))/(a^2*b)

________________________________________________________________________________________

Sympy [A]  time = 1.38012, size = 80, normalized size = 0.78 \begin{align*} \left (- \frac{i A}{a} + \frac{i B}{2 b} + \frac{i B b}{2 a^{2}} - \frac{C}{2 b} + \frac{C b}{2 a^{2}}\right ) \log{\left (e^{i x} + \frac{b}{a} \right )} + \frac{B a x - i B b e^{i x} + i C a x - C b e^{i x}}{2 a b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(x)+C*sin(x))/(a+b*cos(x)-I*b*sin(x)),x)

[Out]

(-I*A/a + I*B/(2*b) + I*B*b/(2*a**2) - C/(2*b) + C*b/(2*a**2))*log(exp(I*x) + b/a) + (B*a*x - I*B*b*exp(I*x) +
 I*C*a*x - C*b*exp(I*x))/(2*a*b)

________________________________________________________________________________________

Giac [B]  time = 1.14179, size = 278, normalized size = 2.7 \begin{align*} -\frac{2 \,{\left (B a^{3} + i \, C a^{3} - 2 \, A a^{2} b - B a^{2} b - i \, C a^{2} b + 2 \, A a b^{2} + B a b^{2} - i \, C a b^{2} - B b^{3} + i \, C b^{3}\right )} \log \left (-a \tan \left (\frac{1}{2} \, x\right ) + b \tan \left (\frac{1}{2} \, x\right ) + i \, a + i \, b\right )}{4 i \, a^{3} b - 4 i \, a^{2} b^{2}} - \frac{{\left (i \, B - C\right )} \log \left (\tan \left (\frac{1}{2} \, x\right ) - i\right )}{2 \, b} - \frac{{\left (-2 i \, A a + i \, B b + C b\right )} \log \left (\tan \left (\frac{1}{2} \, x\right ) + i\right )}{2 \, a^{2}} - \frac{2 i \, A a \tan \left (\frac{1}{2} \, x\right ) - i \, B b \tan \left (\frac{1}{2} \, x\right ) - C b \tan \left (\frac{1}{2} \, x\right ) - 2 \, A a - 2 \, B a + 2 i \, C a + B b - i \, C b}{2 \, a^{2}{\left (\tan \left (\frac{1}{2} \, x\right ) + i\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(x)+C*sin(x))/(a+b*cos(x)-I*b*sin(x)),x, algorithm="giac")

[Out]

-2*(B*a^3 + I*C*a^3 - 2*A*a^2*b - B*a^2*b - I*C*a^2*b + 2*A*a*b^2 + B*a*b^2 - I*C*a*b^2 - B*b^3 + I*C*b^3)*log
(-a*tan(1/2*x) + b*tan(1/2*x) + I*a + I*b)/(4*I*a^3*b - 4*I*a^2*b^2) - 1/2*(I*B - C)*log(tan(1/2*x) - I)/b - 1
/2*(-2*I*A*a + I*B*b + C*b)*log(tan(1/2*x) + I)/a^2 - 1/2*(2*I*A*a*tan(1/2*x) - I*B*b*tan(1/2*x) - C*b*tan(1/2
*x) - 2*A*a - 2*B*a + 2*I*C*a + B*b - I*C*b)/(a^2*(tan(1/2*x) + I))