3.545 \(\int \frac{B \cos (x)+C \sin (x)}{a+b \cos (x)+c \sin (x)} \, dx\)

Optimal. Leaf size=119 \[ -\frac{2 a (b B+c C) \tan ^{-1}\left (\frac{(a-b) \tan \left (\frac{x}{2}\right )+c}{\sqrt{a^2-b^2-c^2}}\right )}{\left (b^2+c^2\right ) \sqrt{a^2-b^2-c^2}}+\frac{(B c-b C) \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\frac{x (b B+c C)}{b^2+c^2} \]

[Out]

((b*B + c*C)*x)/(b^2 + c^2) - (2*a*(b*B + c*C)*ArcTan[(c + (a - b)*Tan[x/2])/Sqrt[a^2 - b^2 - c^2]])/(Sqrt[a^2
 - b^2 - c^2]*(b^2 + c^2)) + ((B*c - b*C)*Log[a + b*Cos[x] + c*Sin[x]])/(b^2 + c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.113433, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {3136, 3124, 618, 204} \[ -\frac{2 a (b B+c C) \tan ^{-1}\left (\frac{(a-b) \tan \left (\frac{x}{2}\right )+c}{\sqrt{a^2-b^2-c^2}}\right )}{\left (b^2+c^2\right ) \sqrt{a^2-b^2-c^2}}+\frac{(B c-b C) \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\frac{x (b B+c C)}{b^2+c^2} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[x] + C*Sin[x])/(a + b*Cos[x] + c*Sin[x]),x]

[Out]

((b*B + c*C)*x)/(b^2 + c^2) - (2*a*(b*B + c*C)*ArcTan[(c + (a - b)*Tan[x/2])/Sqrt[a^2 - b^2 - c^2]])/(Sqrt[a^2
 - b^2 - c^2]*(b^2 + c^2)) + ((B*c - b*C)*Log[a + b*Cos[x] + c*Sin[x]])/(b^2 + c^2)

Rule 3136

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[((b*B + c*C)*x)/(b^2 + c^2), x] + (Dist[(A*(b^2 + c^2
) - a*(b*B + c*C))/(b^2 + c^2), Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] + Simp[((c*B - b*C)*Log[a
+ b*Cos[d + e*x] + c*Sin[d + e*x]])/(e*(b^2 + c^2)), x]) /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2 + c^
2, 0] && NeQ[A*(b^2 + c^2) - a*(b*B + c*C), 0]

Rule 3124

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Dist[(2*f)/e, Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{B \cos (x)+C \sin (x)}{a+b \cos (x)+c \sin (x)} \, dx &=\frac{(b B+c C) x}{b^2+c^2}+\frac{(B c-b C) \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}-\frac{(a (b B+c C)) \int \frac{1}{a+b \cos (x)+c \sin (x)} \, dx}{b^2+c^2}\\ &=\frac{(b B+c C) x}{b^2+c^2}+\frac{(B c-b C) \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}-\frac{(2 a (b B+c C)) \operatorname{Subst}\left (\int \frac{1}{a+b+2 c x+(a-b) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{b^2+c^2}\\ &=\frac{(b B+c C) x}{b^2+c^2}+\frac{(B c-b C) \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\frac{(4 a (b B+c C)) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2-c^2\right )-x^2} \, dx,x,2 c+2 (a-b) \tan \left (\frac{x}{2}\right )\right )}{b^2+c^2}\\ &=\frac{(b B+c C) x}{b^2+c^2}-\frac{2 a (b B+c C) \tan ^{-1}\left (\frac{c+(a-b) \tan \left (\frac{x}{2}\right )}{\sqrt{a^2-b^2-c^2}}\right )}{\sqrt{a^2-b^2-c^2} \left (b^2+c^2\right )}+\frac{(B c-b C) \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}\\ \end{align*}

Mathematica [A]  time = 0.352565, size = 98, normalized size = 0.82 \[ \frac{\frac{2 a (b B+c C) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{x}{2}\right )+c}{\sqrt{-a^2+b^2+c^2}}\right )}{\sqrt{-a^2+b^2+c^2}}+(B c-b C) \log (a+b \cos (x)+c \sin (x))+x (b B+c C)}{b^2+c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[x] + C*Sin[x])/(a + b*Cos[x] + c*Sin[x]),x]

[Out]

((b*B + c*C)*x + (2*a*(b*B + c*C)*ArcTanh[(c + (a - b)*Tan[x/2])/Sqrt[-a^2 + b^2 + c^2]])/Sqrt[-a^2 + b^2 + c^
2] + (B*c - b*C)*Log[a + b*Cos[x] + c*Sin[x]])/(b^2 + c^2)

________________________________________________________________________________________

Maple [B]  time = 0.057, size = 824, normalized size = 6.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(x)+C*sin(x))/(a+b*cos(x)+c*sin(x)),x)

[Out]

1/(b^2+c^2)/(a-b)*ln(a*tan(1/2*x)^2-b*tan(1/2*x)^2+2*c*tan(1/2*x)+a+b)*a*B*c-1/(b^2+c^2)/(a-b)*ln(a*tan(1/2*x)
^2-b*tan(1/2*x)^2+2*c*tan(1/2*x)+a+b)*b*B*c-1/(b^2+c^2)/(a-b)*ln(a*tan(1/2*x)^2-b*tan(1/2*x)^2+2*c*tan(1/2*x)+
a+b)*a*b*C+1/(b^2+c^2)/(a-b)*ln(a*tan(1/2*x)^2-b*tan(1/2*x)^2+2*c*tan(1/2*x)+a+b)*b^2*C-2/(b^2+c^2)/(a^2-b^2-c
^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*a*b*B+2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arcta
n(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*B*c^2-2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*
tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*a*c*C-2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)
/(a^2-b^2-c^2)^(1/2))*C*b*c-2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^
(1/2))*c^2/(a-b)*a*B+2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*
c^2/(a-b)*b*B+2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*c/(a-b)
*a*b*C-2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*c/(a-b)*b^2*C-
B/(b^2+c^2)*c*ln(1+tan(1/2*x)^2)+C/(b^2+c^2)*b*ln(1+tan(1/2*x)^2)+2*B/(b^2+c^2)*b*arctan(tan(1/2*x))+2*C/(b^2+
c^2)*c*arctan(tan(1/2*x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(x)+C*sin(x))/(a+b*cos(x)+c*sin(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.66707, size = 1507, normalized size = 12.66 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(x)+C*sin(x))/(a+b*cos(x)+c*sin(x)),x, algorithm="fricas")

[Out]

[-1/2*((B*a*b + C*a*c)*sqrt(-a^2 + b^2 + c^2)*log((a^2*b^2 - 2*b^4 - c^4 - (a^2 + 3*b^2)*c^2 - (2*a^2*b^2 - b^
4 - 2*a^2*c^2 + c^4)*cos(x)^2 - 2*(a*b^3 + a*b*c^2)*cos(x) - 2*(a*b^2*c + a*c^3 - (b*c^3 - (2*a^2*b - b^3)*c)*
cos(x))*sin(x) - 2*(2*a*b*c*cos(x)^2 - a*b*c + (b^2*c + c^3)*cos(x) - (b^3 + b*c^2 + (a*b^2 - a*c^2)*cos(x))*s
in(x))*sqrt(-a^2 + b^2 + c^2))/(2*a*b*cos(x) + (b^2 - c^2)*cos(x)^2 + a^2 + c^2 + 2*(b*c*cos(x) + a*c)*sin(x))
) - 2*(B*a^2*b - B*b^3 - B*b*c^2 - C*c^3 + (C*a^2 - C*b^2)*c)*x + (C*a^2*b - C*b^3 - C*b*c^2 + B*c^3 - (B*a^2
- B*b^2)*c)*log(2*a*b*cos(x) + (b^2 - c^2)*cos(x)^2 + a^2 + c^2 + 2*(b*c*cos(x) + a*c)*sin(x)))/(a^2*b^2 - b^4
 - c^4 + (a^2 - 2*b^2)*c^2), -1/2*(2*(B*a*b + C*a*c)*sqrt(a^2 - b^2 - c^2)*arctan(-(a*b*cos(x) + a*c*sin(x) +
b^2 + c^2)*sqrt(a^2 - b^2 - c^2)/((c^3 - (a^2 - b^2)*c)*cos(x) + (a^2*b - b^3 - b*c^2)*sin(x))) - 2*(B*a^2*b -
 B*b^3 - B*b*c^2 - C*c^3 + (C*a^2 - C*b^2)*c)*x + (C*a^2*b - C*b^3 - C*b*c^2 + B*c^3 - (B*a^2 - B*b^2)*c)*log(
2*a*b*cos(x) + (b^2 - c^2)*cos(x)^2 + a^2 + c^2 + 2*(b*c*cos(x) + a*c)*sin(x)))/(a^2*b^2 - b^4 - c^4 + (a^2 -
2*b^2)*c^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(x)+C*sin(x))/(a+b*cos(x)+c*sin(x)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.16191, size = 252, normalized size = 2.12 \begin{align*} \frac{{\left (B b + C c\right )} x}{b^{2} + c^{2}} - \frac{{\left (C b - B c\right )} \log \left (-a \tan \left (\frac{1}{2} \, x\right )^{2} + b \tan \left (\frac{1}{2} \, x\right )^{2} - 2 \, c \tan \left (\frac{1}{2} \, x\right ) - a - b\right )}{b^{2} + c^{2}} + \frac{{\left (C b - B c\right )} \log \left (\tan \left (\frac{1}{2} \, x\right )^{2} + 1\right )}{b^{2} + c^{2}} + \frac{2 \,{\left (B a b + C a c\right )}{\left (\pi \left \lfloor \frac{x}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, x\right ) - b \tan \left (\frac{1}{2} \, x\right ) + c}{\sqrt{a^{2} - b^{2} - c^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2} - c^{2}}{\left (b^{2} + c^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(x)+C*sin(x))/(a+b*cos(x)+c*sin(x)),x, algorithm="giac")

[Out]

(B*b + C*c)*x/(b^2 + c^2) - (C*b - B*c)*log(-a*tan(1/2*x)^2 + b*tan(1/2*x)^2 - 2*c*tan(1/2*x) - a - b)/(b^2 +
c^2) + (C*b - B*c)*log(tan(1/2*x)^2 + 1)/(b^2 + c^2) + 2*(B*a*b + C*a*c)*(pi*floor(1/2*x/pi + 1/2)*sgn(-2*a +
2*b) + arctan(-(a*tan(1/2*x) - b*tan(1/2*x) + c)/sqrt(a^2 - b^2 - c^2)))/(sqrt(a^2 - b^2 - c^2)*(b^2 + c^2))