3.415 \(\int \frac{1}{(a+b \cos (d+e x)+c \sin (d+e x))^{5/2}} \, dx\)

Optimal. Leaf size=382 \[ -\frac{2 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} \text{EllipticF}\left (\frac{1}{2} \left (-\tan ^{-1}(b,c)+d+e x\right ),\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \left (a^2-b^2-c^2\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{8 a \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \left (a^2-b^2-c^2\right )^2 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}+\frac{8 (a c \cos (d+e x)-a b \sin (d+e x))}{3 e \left (a^2-b^2-c^2\right )^2 \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 e \left (a^2-b^2-c^2\right ) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}} \]

[Out]

(2*(c*Cos[d + e*x] - b*Sin[d + e*x]))/(3*(a^2 - b^2 - c^2)*e*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2)) + (8
*(a*c*Cos[d + e*x] - a*b*Sin[d + e*x]))/(3*(a^2 - b^2 - c^2)^2*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]) +
(8*a*EllipticE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x]
+ c*Sin[d + e*x]])/(3*(a^2 - b^2 - c^2)^2*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])])
 - (2*EllipticF[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x
] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])])/(3*(a^2 - b^2 - c^2)*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.362805, antiderivative size = 382, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {3129, 3156, 3149, 3119, 2653, 3127, 2661} \[ -\frac{2 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} F\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \left (a^2-b^2-c^2\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{8 a \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \left (a^2-b^2-c^2\right )^2 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}+\frac{8 (a c \cos (d+e x)-a b \sin (d+e x))}{3 e \left (a^2-b^2-c^2\right )^2 \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 e \left (a^2-b^2-c^2\right ) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(-5/2),x]

[Out]

(2*(c*Cos[d + e*x] - b*Sin[d + e*x]))/(3*(a^2 - b^2 - c^2)*e*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2)) + (8
*(a*c*Cos[d + e*x] - a*b*Sin[d + e*x]))/(3*(a^2 - b^2 - c^2)^2*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]) +
(8*a*EllipticE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x]
+ c*Sin[d + e*x]])/(3*(a^2 - b^2 - c^2)^2*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])])
 - (2*EllipticF[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x
] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])])/(3*(a^2 - b^2 - c^2)*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

Rule 3129

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[((-(c*Cos[d
 + e*x]) + b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1))/(e*(n + 1)*(a^2 - b^2 - c^2)), x] +
Dist[1/((n + 1)*(a^2 - b^2 - c^2)), Int[(a*(n + 1) - b*(n + 2)*Cos[d + e*x] - c*(n + 2)*Sin[d + e*x])*(a + b*C
os[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && LtQ[n
, -1] && NeQ[n, -3/2]

Rule 3156

Int[((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> -Simp[((c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B -
 b*A)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1))/(e*(n + 1)*(a^2 - b^2 - c^2)), x] + Dist[1/
((n + 1)*(a^2 - b^2 - c^2)), Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)*Simp[(n + 1)*(a*A - b*B - c*C)
+ (n + 2)*(a*B - b*A)*Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A,
B, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2]

Rule 3149

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rule 3119

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3127

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], Int[1/Sqrt[
a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \cos (d+e x)+c \sin (d+e x))^{5/2}} \, dx &=\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right ) e (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}-\frac{2 \int \frac{-\frac{3 a}{2}+\frac{1}{2} b \cos (d+e x)+\frac{1}{2} c \sin (d+e x)}{(a+b \cos (d+e x)+c \sin (d+e x))^{3/2}} \, dx}{3 \left (a^2-b^2-c^2\right )}\\ &=\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right ) e (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}+\frac{8 (a c \cos (d+e x)-a b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right )^2 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{4 \int \frac{\frac{1}{4} \left (3 a^2+b^2+c^2\right )+a b \cos (d+e x)+a c \sin (d+e x)}{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)}} \, dx}{3 \left (a^2-b^2-c^2\right )^2}\\ &=\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right ) e (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}+\frac{8 (a c \cos (d+e x)-a b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right )^2 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{(4 a) \int \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \, dx}{3 \left (a^2-b^2-c^2\right )^2}-\frac{\int \frac{1}{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)}} \, dx}{3 \left (a^2-b^2-c^2\right )}\\ &=\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right ) e (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}+\frac{8 (a c \cos (d+e x)-a b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right )^2 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{\left (4 a \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}\right ) \int \sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}} \, dx}{3 \left (a^2-b^2-c^2\right )^2 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{\sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} \int \frac{1}{\sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}}} \, dx}{3 \left (a^2-b^2-c^2\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}\\ &=\frac{2 (c \cos (d+e x)-b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right ) e (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}+\frac{8 (a c \cos (d+e x)-a b \sin (d+e x))}{3 \left (a^2-b^2-c^2\right )^2 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{8 a E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 \left (a^2-b^2-c^2\right )^2 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{2 F\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}{3 \left (a^2-b^2-c^2\right ) e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}\\ \end{align*}

Mathematica [C]  time = 6.3863, size = 2408, normalized size = 6.3 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(-5/2),x]

[Out]

(Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]*((8*a*(b^2 + c^2))/(3*b*c*(a^2 - b^2 - c^2)^2) + (2*(a*c + b^2*Sin[
d + e*x] + c^2*Sin[d + e*x]))/(3*b*(-a^2 + b^2 + c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^2) - (2*(3*a^2*c +
 b^2*c + c^3 + 4*a*b^2*Sin[d + e*x] + 4*a*c^2*Sin[d + e*x]))/(3*b*(-a^2 + b^2 + c^2)^2*(a + b*Cos[d + e*x] + c
*Sin[d + e*x]))))/e + (2*a^2*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]
])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]]
)/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c
^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2
+ c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x +
ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(Sqrt[1 + b^2/c^2]*c*(-a^2 + b^2 + c^2)^2*e) + (2*b^2*AppellF1[
1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 +
 b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 +
 b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d +
e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]
]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)
/c^2])])/(3*Sqrt[1 + b^2/c^2]*c*(-a^2 + b^2 + c^2)^2*e) + (2*c*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^
2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2
/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTa
n[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 +
 c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sq
rt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(3*Sqrt[1 + b^2/c^2]*(-a^2 +
b^2 + c^2)^2*e) + (4*a*b^2*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcT
an[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTa
n[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^
2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)
/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b
^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*
Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sq
rt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(3*c*(-a^2 + b^2 + c^2)^2*e) + (4*a*c*(-((c*AppellF1[-1/2, -1/2,
 -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2
/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2
/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)
/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x
- ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sq
rt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d +
 e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(3*(-a^
2 + b^2 + c^2)^2*e)

________________________________________________________________________________________

Maple [B]  time = 29.057, size = 2967, normalized size = 7.8 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x)

[Out]

(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(e*x+d-arctan(-b,c))^2/(b^2+
c^2)^(1/2))^(1/2)*(1/4*(b^2+c^2)/(a^2-b^2-c^2)/a*(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(
-b,c))+a))^(1/2)/(b^2*sin(e*x+d-arctan(-b,c))+c^2*sin(e*x+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))+1/3/(a^2-b^2-c^2)
/(b^2+c^2)^(1/2)*(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)/(sin(e*x+d-arct
an(-b,c))+1/(b^2+c^2)^(1/2)*a)^2+4/3*(b^2+c^2)^(1/2)*cos(e*x+d-arctan(-b,c))^2/(a^2-b^2-c^2)^2*a/(cos(e*x+d-ar
ctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)+2*(-7/24/(a^2-b^2-c^2)+2/3*a^2/(a^2-b^2-c^2)^
2)*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*
x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(
-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*Ellip
ticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^
2)^(1/2)))^(1/2))+2*(1/8/a/(a^2-b^2-c^2)*(b^2+c^2)^(1/2)+2/3*a*(b^2+c^2)^(1/2)/(a^2-b^2-c^2)^2)*(1/(b^2+c^2)^(
1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))
+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2
)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)^(1/2)*a
-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(
a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)
,((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))+1/8*(5*a^2-b^2-c^2)/a^2/(a^2-b^2-c^2)*(1/(b^2+c^2)^(1/2)*a-
1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^
2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/
2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*EllipticPi(((-(b^2+c^2)^(1/2)
*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),-1/2*(-1/(b^2+c^2)^(1/2)*a+1)*(b^2+c^2)^(1/2)/a,((a-(b
^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))-1/4/a/(a^2-b^2-c^2)*(b^2+c^2)^(1/2)*(cos(e*x+d-arctan(-b,c))^2*(b^2
+c^2)*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)/(b^2*sin(e*x+d-arctan(-b,c))+c^2*sin(e*x+d-arctan(-b,
c))-a*(b^2+c^2)^(1/2))+1/3/(a^2-b^2-c^2)/(b^2+c^2)*(cos(e*x+d-arctan(-b,c))^2*(b^2+c^2)*((b^2+c^2)^(1/2)*sin(e
*x+d-arctan(-b,c))+a))^(1/2)/(sin(e*x+d-arctan(-b,c))+1/(b^2+c^2)^(1/2)*a)^2-4/3*(-b^2-c^2)*cos(e*x+d-arctan(-
b,c))^2/(a^2-b^2-c^2)^2*a/(cos(e*x+d-arctan(-b,c))^2*(b^2+c^2)*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1
/2)+2*(-1/24/(a^2-b^2-c^2)*(b^2+c^2)^(1/2)+2/3*a^2*(b^2+c^2)^(1/2)/(a^2-b^2-c^2)^2)*(1/(b^2+c^2)^(1/2)*a-1)*((
-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2
)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(c
os(e*x+d-arctan(-b,c))^2*(b^2+c^2)*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*EllipticF(((-(b^2+c^2)^(
1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+2
*(13*a^2*b^2+13*a^2*c^2+3*b^4+6*b^2*c^2+3*c^4)/(24*a^5-48*a^3*b^2-48*a^3*c^2+24*a*b^4+48*a*b^2*c^2+24*a*c^4)*(
1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-
arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(
b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*(b^2+c^2)*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)
*((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)
,((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+
(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))-1/8*(5*a^2*b^2+5*a^2*c^2-b^4-2*b^2*c
^2-c^4)/a^2/(a^2-b^2-c^2)/(b^2+c^2)^(1/2)*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a
)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin
(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*(b^2+c^2)*((b^2+c
^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*EllipticPi(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+
c^2)^(1/2)))^(1/2),-1/2*(-1/(b^2+c^2)^(1/2)*a+1)*(b^2+c^2)^(1/2)/a,((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(
1/2)))/cos(e*x+d-arctan(-b,c))/((b^2*sin(e*x+d-arctan(-b,c))+c^2*sin(e*x+d-arctan(-b,c))+a*(b^2+c^2)^(1/2))/(b
^2+c^2)^(1/2))^(1/2)/e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(-5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a}}{{\left (b^{3} - 3 \, b c^{2}\right )} \cos \left (e x + d\right )^{3} + a^{3} + 3 \, a c^{2} + 3 \,{\left (a b^{2} - a c^{2}\right )} \cos \left (e x + d\right )^{2} + 3 \,{\left (a^{2} b + b c^{2}\right )} \cos \left (e x + d\right ) +{\left (6 \, a b c \cos \left (e x + d\right ) + 3 \, a^{2} c + c^{3} +{\left (3 \, b^{2} c - c^{3}\right )} \cos \left (e x + d\right )^{2}\right )} \sin \left (e x + d\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(e*x + d) + c*sin(e*x + d) + a)/((b^3 - 3*b*c^2)*cos(e*x + d)^3 + a^3 + 3*a*c^2 + 3*(a*b^2
- a*c^2)*cos(e*x + d)^2 + 3*(a^2*b + b*c^2)*cos(e*x + d) + (6*a*b*c*cos(e*x + d) + 3*a^2*c + c^3 + (3*b^2*c -
c^3)*cos(e*x + d)^2)*sin(e*x + d)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(e*x+d)+c*sin(e*x+d))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="giac")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(-5/2), x)