3.380 \(\int \frac{1}{(2 a-2 a \cos (d+e x)+2 c \sin (d+e x))^4} \, dx\)

Optimal. Leaf size=207 \[ -\frac{a \left (15 a^2+4 c^2\right ) \sin (d+e x)+c \left (15 a^2+4 c^2\right ) \cos (d+e x)}{96 c^6 e (a (-\cos (d+e x))+a+c \sin (d+e x))}+\frac{5 \left (a^2 \sin (d+e x)+a c \cos (d+e x)\right )}{96 c^4 e (a (-\cos (d+e x))+a+c \sin (d+e x))^2}+\frac{a \left (5 a^2+3 c^2\right ) \log \left (a+c \cot \left (\frac{1}{2} (d+e x)\right )\right )}{32 c^7 e}-\frac{a \sin (d+e x)+c \cos (d+e x)}{48 c^2 e (a (-\cos (d+e x))+a+c \sin (d+e x))^3} \]

[Out]

(a*(5*a^2 + 3*c^2)*Log[a + c*Cot[(d + e*x)/2]])/(32*c^7*e) - (c*Cos[d + e*x] + a*Sin[d + e*x])/(48*c^2*e*(a -
a*Cos[d + e*x] + c*Sin[d + e*x])^3) + (5*(a*c*Cos[d + e*x] + a^2*Sin[d + e*x]))/(96*c^4*e*(a - a*Cos[d + e*x]
+ c*Sin[d + e*x])^2) - (c*(15*a^2 + 4*c^2)*Cos[d + e*x] + a*(15*a^2 + 4*c^2)*Sin[d + e*x])/(96*c^6*e*(a - a*Co
s[d + e*x] + c*Sin[d + e*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.24045, antiderivative size = 207, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {3129, 3156, 3153, 3121, 31} \[ -\frac{a \left (15 a^2+4 c^2\right ) \sin (d+e x)+c \left (15 a^2+4 c^2\right ) \cos (d+e x)}{96 c^6 e (a (-\cos (d+e x))+a+c \sin (d+e x))}+\frac{5 \left (a^2 \sin (d+e x)+a c \cos (d+e x)\right )}{96 c^4 e (a (-\cos (d+e x))+a+c \sin (d+e x))^2}+\frac{a \left (5 a^2+3 c^2\right ) \log \left (a+c \cot \left (\frac{1}{2} (d+e x)\right )\right )}{32 c^7 e}-\frac{a \sin (d+e x)+c \cos (d+e x)}{48 c^2 e (a (-\cos (d+e x))+a+c \sin (d+e x))^3} \]

Antiderivative was successfully verified.

[In]

Int[(2*a - 2*a*Cos[d + e*x] + 2*c*Sin[d + e*x])^(-4),x]

[Out]

(a*(5*a^2 + 3*c^2)*Log[a + c*Cot[(d + e*x)/2]])/(32*c^7*e) - (c*Cos[d + e*x] + a*Sin[d + e*x])/(48*c^2*e*(a -
a*Cos[d + e*x] + c*Sin[d + e*x])^3) + (5*(a*c*Cos[d + e*x] + a^2*Sin[d + e*x]))/(96*c^4*e*(a - a*Cos[d + e*x]
+ c*Sin[d + e*x])^2) - (c*(15*a^2 + 4*c^2)*Cos[d + e*x] + a*(15*a^2 + 4*c^2)*Sin[d + e*x])/(96*c^6*e*(a - a*Co
s[d + e*x] + c*Sin[d + e*x]))

Rule 3129

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[((-(c*Cos[d
 + e*x]) + b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1))/(e*(n + 1)*(a^2 - b^2 - c^2)), x] +
Dist[1/((n + 1)*(a^2 - b^2 - c^2)), Int[(a*(n + 1) - b*(n + 2)*Cos[d + e*x] - c*(n + 2)*Sin[d + e*x])*(a + b*C
os[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && LtQ[n
, -1] && NeQ[n, -3/2]

Rule 3156

Int[((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> -Simp[((c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B -
 b*A)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1))/(e*(n + 1)*(a^2 - b^2 - c^2)), x] + Dist[1/
((n + 1)*(a^2 - b^2 - c^2)), Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)*Simp[(n + 1)*(a*A - b*B - c*C)
+ (n + 2)*(a*B - b*A)*Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A,
B, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2]

Rule 3153

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^2, x_Symbol] :> Simp[(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)
*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])), x] + Dist[(a*A - b*B - c*C)/(a^2 -
 b^2 - c^2), Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[
a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B - c*C, 0]

Rule 3121

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Cot[(d + e*x)/2], x]}, -Dist[f/e, Subst[Int[1/(a + c*f*x), x], x, Cot[(d + e*x)/2]/f], x]] /; FreeQ[{a
, b, c, d, e}, x] && EqQ[a + b, 0]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{(2 a-2 a \cos (d+e x)+2 c \sin (d+e x))^4} \, dx &=-\frac{c \cos (d+e x)+a \sin (d+e x)}{48 c^2 e (a-a \cos (d+e x)+c \sin (d+e x))^3}+\frac{\int \frac{-6 a-4 a \cos (d+e x)+4 c \sin (d+e x)}{(2 a-2 a \cos (d+e x)+2 c \sin (d+e x))^3} \, dx}{12 c^2}\\ &=-\frac{c \cos (d+e x)+a \sin (d+e x)}{48 c^2 e (a-a \cos (d+e x)+c \sin (d+e x))^3}+\frac{5 \left (a c \cos (d+e x)+a^2 \sin (d+e x)\right )}{96 c^4 e (a-a \cos (d+e x)+c \sin (d+e x))^2}+\frac{\int \frac{8 \left (5 a^2+2 c^2\right )+20 a^2 \cos (d+e x)-20 a c \sin (d+e x)}{(2 a-2 a \cos (d+e x)+2 c \sin (d+e x))^2} \, dx}{96 c^4}\\ &=-\frac{c \cos (d+e x)+a \sin (d+e x)}{48 c^2 e (a-a \cos (d+e x)+c \sin (d+e x))^3}+\frac{5 \left (a c \cos (d+e x)+a^2 \sin (d+e x)\right )}{96 c^4 e (a-a \cos (d+e x)+c \sin (d+e x))^2}-\frac{c \left (15 a^2+4 c^2\right ) \cos (d+e x)+a \left (15 a^2+4 c^2\right ) \sin (d+e x)}{96 c^6 e (a-a \cos (d+e x)+c \sin (d+e x))}-\frac{\left (a \left (5 a^2+3 c^2\right )\right ) \int \frac{1}{2 a-2 a \cos (d+e x)+2 c \sin (d+e x)} \, dx}{16 c^6}\\ &=-\frac{c \cos (d+e x)+a \sin (d+e x)}{48 c^2 e (a-a \cos (d+e x)+c \sin (d+e x))^3}+\frac{5 \left (a c \cos (d+e x)+a^2 \sin (d+e x)\right )}{96 c^4 e (a-a \cos (d+e x)+c \sin (d+e x))^2}-\frac{c \left (15 a^2+4 c^2\right ) \cos (d+e x)+a \left (15 a^2+4 c^2\right ) \sin (d+e x)}{96 c^6 e (a-a \cos (d+e x)+c \sin (d+e x))}+\frac{\left (a \left (5 a^2+3 c^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{2 a+2 c x} \, dx,x,\cot \left (\frac{1}{2} (d+e x)\right )\right )}{16 c^6 e}\\ &=\frac{a \left (5 a^2+3 c^2\right ) \log \left (a+c \cot \left (\frac{1}{2} (d+e x)\right )\right )}{32 c^7 e}-\frac{c \cos (d+e x)+a \sin (d+e x)}{48 c^2 e (a-a \cos (d+e x)+c \sin (d+e x))^3}+\frac{5 \left (a c \cos (d+e x)+a^2 \sin (d+e x)\right )}{96 c^4 e (a-a \cos (d+e x)+c \sin (d+e x))^2}-\frac{c \left (15 a^2+4 c^2\right ) \cos (d+e x)+a \left (15 a^2+4 c^2\right ) \sin (d+e x)}{96 c^6 e (a-a \cos (d+e x)+c \sin (d+e x))}\\ \end{align*}

Mathematica [B]  time = 1.08889, size = 494, normalized size = 2.39 \[ \frac{\sin \left (\frac{1}{2} (d+e x)\right ) \left (a \sin \left (\frac{1}{2} (d+e x)\right )+c \cos \left (\frac{1}{2} (d+e x)\right )\right ) \left (75 a^3 c^3 \sin (d+e x)-156 a^3 c^3 \sin (2 (d+e x))+79 a^3 c^3 \sin (3 (d+e x))-255 a^4 c^2 \cos (d+e x)+174 a^4 c^2 \cos (2 (d+e x))-49 a^4 c^2 \cos (3 (d+e x))-42 a^2 c^4 \cos (d+e x)+18 a^2 c^4 \cos (3 (d+e x))-192 \left (5 a^3+3 a c^2\right ) \sin ^3\left (\frac{1}{2} (d+e x)\right ) \log \left (\sin \left (\frac{1}{2} (d+e x)\right )\right ) \left (a \sin \left (\frac{1}{2} (d+e x)\right )+c \cos \left (\frac{1}{2} (d+e x)\right )\right )^3+192 \left (5 a^3+3 a c^2\right ) \sin ^3\left (\frac{1}{2} (d+e x)\right ) \left (a \sin \left (\frac{1}{2} (d+e x)\right )+c \cos \left (\frac{1}{2} (d+e x)\right )\right )^3 \log \left (a \sin \left (\frac{1}{2} (d+e x)\right )+c \cos \left (\frac{1}{2} (d+e x)\right )\right )+130 a^4 c^2+24 a^2 c^4+75 a^5 c \sin (d+e x)-60 a^5 c \sin (2 (d+e x))+15 a^5 c \sin (3 (d+e x))-225 a^6 \cos (d+e x)+90 a^6 \cos (2 (d+e x))-15 a^6 \cos (3 (d+e x))+150 a^6-12 a c^5 \sin (d+e x)-12 a c^5 \sin (2 (d+e x))+20 a c^5 \sin (3 (d+e x))-24 c^6 \cos (d+e x)+8 c^6 \cos (3 (d+e x))\right )}{384 c^7 e (a (-\cos (d+e x))+a+c \sin (d+e x))^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(2*a - 2*a*Cos[d + e*x] + 2*c*Sin[d + e*x])^(-4),x]

[Out]

(Sin[(d + e*x)/2]*(c*Cos[(d + e*x)/2] + a*Sin[(d + e*x)/2])*(150*a^6 + 130*a^4*c^2 + 24*a^2*c^4 - 225*a^6*Cos[
d + e*x] - 255*a^4*c^2*Cos[d + e*x] - 42*a^2*c^4*Cos[d + e*x] - 24*c^6*Cos[d + e*x] + 90*a^6*Cos[2*(d + e*x)]
+ 174*a^4*c^2*Cos[2*(d + e*x)] - 15*a^6*Cos[3*(d + e*x)] - 49*a^4*c^2*Cos[3*(d + e*x)] + 18*a^2*c^4*Cos[3*(d +
 e*x)] + 8*c^6*Cos[3*(d + e*x)] - 192*(5*a^3 + 3*a*c^2)*Log[Sin[(d + e*x)/2]]*Sin[(d + e*x)/2]^3*(c*Cos[(d + e
*x)/2] + a*Sin[(d + e*x)/2])^3 + 192*(5*a^3 + 3*a*c^2)*Log[c*Cos[(d + e*x)/2] + a*Sin[(d + e*x)/2]]*Sin[(d + e
*x)/2]^3*(c*Cos[(d + e*x)/2] + a*Sin[(d + e*x)/2])^3 + 75*a^5*c*Sin[d + e*x] + 75*a^3*c^3*Sin[d + e*x] - 12*a*
c^5*Sin[d + e*x] - 60*a^5*c*Sin[2*(d + e*x)] - 156*a^3*c^3*Sin[2*(d + e*x)] - 12*a*c^5*Sin[2*(d + e*x)] + 15*a
^5*c*Sin[3*(d + e*x)] + 79*a^3*c^3*Sin[3*(d + e*x)] + 20*a*c^5*Sin[3*(d + e*x)]))/(384*c^7*e*(a - a*Cos[d + e*
x] + c*Sin[d + e*x])^4)

________________________________________________________________________________________

Maple [B]  time = 0.229, size = 416, normalized size = 2. \begin{align*} -{\frac{{a}^{3}}{64\,{c}^{5}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-2}}-{\frac{3\,a}{128\,{c}^{3}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-2}}+{\frac{c}{128\,{a}^{3}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-2}}-{\frac{5\,{a}^{3}}{64\,e{c}^{6}} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-1}}-{\frac{9\,a}{128\,{c}^{4}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-1}}-{\frac{1}{128\,{a}^{3}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-1}}-{\frac{{a}^{3}}{384\,{c}^{4}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-3}}-{\frac{a}{128\,{c}^{2}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-3}}-{\frac{1}{128\,ae} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-3}}-{\frac{{c}^{2}}{384\,{a}^{3}e} \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-3}}+{\frac{5\,{a}^{3}}{32\,e{c}^{7}}\ln \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) }+{\frac{3\,a}{32\,{c}^{5}e}\ln \left ( c+a\tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) }-{\frac{1}{384\,{c}^{4}e} \left ( \tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-3}}-{\frac{5\,{a}^{2}}{64\,e{c}^{6}} \left ( \tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-1}}-{\frac{3}{128\,{c}^{4}e} \left ( \tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-1}}+{\frac{a}{64\,{c}^{5}e} \left ( \tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) ^{-2}}-{\frac{5\,{a}^{3}}{32\,e{c}^{7}}\ln \left ( \tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) }-{\frac{3\,a}{32\,{c}^{5}e}\ln \left ( \tan \left ({\frac{d}{2}}+{\frac{ex}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*a-2*a*cos(e*x+d)+2*c*sin(e*x+d))^4,x)

[Out]

-1/64/e*a^3/c^5/(c+a*tan(1/2*d+1/2*e*x))^2-3/128/e*a/c^3/(c+a*tan(1/2*d+1/2*e*x))^2+1/128/e/a^3*c/(c+a*tan(1/2
*d+1/2*e*x))^2-5/64/e/c^6*a^3/(c+a*tan(1/2*d+1/2*e*x))-9/128/e/c^4*a/(c+a*tan(1/2*d+1/2*e*x))-1/128/e/a^3/(c+a
*tan(1/2*d+1/2*e*x))-1/384/e*a^3/c^4/(c+a*tan(1/2*d+1/2*e*x))^3-1/128/e*a/c^2/(c+a*tan(1/2*d+1/2*e*x))^3-1/128
/e/a/(c+a*tan(1/2*d+1/2*e*x))^3-1/384/e/a^3*c^2/(c+a*tan(1/2*d+1/2*e*x))^3+5/32/e*a^3/c^7*ln(c+a*tan(1/2*d+1/2
*e*x))+3/32/e*a/c^5*ln(c+a*tan(1/2*d+1/2*e*x))-1/384/e/c^4/tan(1/2*d+1/2*e*x)^3-5/64/e/c^6/tan(1/2*d+1/2*e*x)*
a^2-3/128/e/c^4/tan(1/2*d+1/2*e*x)+1/64/e/c^5*a/tan(1/2*d+1/2*e*x)^2-5/32/e*a^3/c^7*ln(tan(1/2*d+1/2*e*x))-3/3
2/e*a/c^5*ln(tan(1/2*d+1/2*e*x))

________________________________________________________________________________________

Maxima [A]  time = 1.12117, size = 516, normalized size = 2.49 \begin{align*} -\frac{\frac{a^{3} c^{5} - \frac{3 \, a^{4} c^{4} \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + \frac{3 \,{\left (5 \, a^{5} c^{3} + 3 \, a^{3} c^{5}\right )} \sin \left (e x + d\right )^{2}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{2}} + \frac{{\left (110 \, a^{6} c^{2} + 66 \, a^{4} c^{4} + 3 \, a^{2} c^{6} + c^{8}\right )} \sin \left (e x + d\right )^{3}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{3}} + \frac{3 \,{\left (50 \, a^{7} c + 30 \, a^{5} c^{3} + a c^{7}\right )} \sin \left (e x + d\right )^{4}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{4}} + \frac{3 \,{\left (20 \, a^{8} + 12 \, a^{6} c^{2} + a^{2} c^{6}\right )} \sin \left (e x + d\right )^{5}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{5}}}{\frac{a^{3} c^{9} \sin \left (e x + d\right )^{3}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{3}} + \frac{3 \, a^{4} c^{8} \sin \left (e x + d\right )^{4}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{4}} + \frac{3 \, a^{5} c^{7} \sin \left (e x + d\right )^{5}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{5}} + \frac{a^{6} c^{6} \sin \left (e x + d\right )^{6}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{6}}} - \frac{12 \,{\left (5 \, a^{3} + 3 \, a c^{2}\right )} \log \left (c + \frac{a \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1}\right )}{c^{7}} + \frac{12 \,{\left (5 \, a^{3} + 3 \, a c^{2}\right )} \log \left (\frac{\sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1}\right )}{c^{7}}}{384 \, e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a-2*a*cos(e*x+d)+2*c*sin(e*x+d))^4,x, algorithm="maxima")

[Out]

-1/384*((a^3*c^5 - 3*a^4*c^4*sin(e*x + d)/(cos(e*x + d) + 1) + 3*(5*a^5*c^3 + 3*a^3*c^5)*sin(e*x + d)^2/(cos(e
*x + d) + 1)^2 + (110*a^6*c^2 + 66*a^4*c^4 + 3*a^2*c^6 + c^8)*sin(e*x + d)^3/(cos(e*x + d) + 1)^3 + 3*(50*a^7*
c + 30*a^5*c^3 + a*c^7)*sin(e*x + d)^4/(cos(e*x + d) + 1)^4 + 3*(20*a^8 + 12*a^6*c^2 + a^2*c^6)*sin(e*x + d)^5
/(cos(e*x + d) + 1)^5)/(a^3*c^9*sin(e*x + d)^3/(cos(e*x + d) + 1)^3 + 3*a^4*c^8*sin(e*x + d)^4/(cos(e*x + d) +
 1)^4 + 3*a^5*c^7*sin(e*x + d)^5/(cos(e*x + d) + 1)^5 + a^6*c^6*sin(e*x + d)^6/(cos(e*x + d) + 1)^6) - 12*(5*a
^3 + 3*a*c^2)*log(c + a*sin(e*x + d)/(cos(e*x + d) + 1))/c^7 + 12*(5*a^3 + 3*a*c^2)*log(sin(e*x + d)/(cos(e*x
+ d) + 1))/c^7)/e

________________________________________________________________________________________

Fricas [B]  time = 2.64159, size = 1783, normalized size = 8.61 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a-2*a*cos(e*x+d)+2*c*sin(e*x+d))^4,x, algorithm="fricas")

[Out]

1/192*(60*a^4*c^2 + 6*a^2*c^4 + 2*(45*a^4*c^2 - 3*a^2*c^4 - 4*c^6)*cos(e*x + d)^3 - 12*(10*a^4*c^2 + a^2*c^4)*
cos(e*x + d)^2 - 6*(5*a^4*c^2 - 2*a^2*c^4 - 2*c^6)*cos(e*x + d) - 3*(5*a^6 + 18*a^4*c^2 + 9*a^2*c^4 - (5*a^6 -
 12*a^4*c^2 - 9*a^2*c^4)*cos(e*x + d)^3 + 3*(5*a^6 - 2*a^4*c^2 - 3*a^2*c^4)*cos(e*x + d)^2 - 3*(5*a^6 + 8*a^4*
c^2 + 3*a^2*c^4)*cos(e*x + d) + (15*a^5*c + 14*a^3*c^3 + 3*a*c^5 + (15*a^5*c + 4*a^3*c^3 - 3*a*c^5)*cos(e*x +
d)^2 - 6*(5*a^5*c + 3*a^3*c^3)*cos(e*x + d))*sin(e*x + d))*log(a*c*sin(e*x + d) + 1/2*a^2 + 1/2*c^2 - 1/2*(a^2
 - c^2)*cos(e*x + d)) + 3*(5*a^6 + 18*a^4*c^2 + 9*a^2*c^4 - (5*a^6 - 12*a^4*c^2 - 9*a^2*c^4)*cos(e*x + d)^3 +
3*(5*a^6 - 2*a^4*c^2 - 3*a^2*c^4)*cos(e*x + d)^2 - 3*(5*a^6 + 8*a^4*c^2 + 3*a^2*c^4)*cos(e*x + d) + (15*a^5*c
+ 14*a^3*c^3 + 3*a*c^5 + (15*a^5*c + 4*a^3*c^3 - 3*a*c^5)*cos(e*x + d)^2 - 6*(5*a^5*c + 3*a^3*c^3)*cos(e*x + d
))*sin(e*x + d))*log(-1/2*cos(e*x + d) + 1/2) + 2*(15*a^5*c + 14*a^3*c^3 + 6*a*c^5 + (15*a^5*c - 41*a^3*c^3 -
12*a*c^5)*cos(e*x + d)^2 - 3*(10*a^5*c - 9*a^3*c^3 - a*c^5)*cos(e*x + d))*sin(e*x + d))/((a^3*c^7 - 3*a*c^9)*e
*cos(e*x + d)^3 - 3*(a^3*c^7 - a*c^9)*e*cos(e*x + d)^2 + 3*(a^3*c^7 + a*c^9)*e*cos(e*x + d) - (a^3*c^7 + 3*a*c
^9)*e + (6*a^2*c^8*e*cos(e*x + d) - (3*a^2*c^8 - c^10)*e*cos(e*x + d)^2 - (3*a^2*c^8 + c^10)*e)*sin(e*x + d))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a-2*a*cos(e*x+d)+2*c*sin(e*x+d))**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.20794, size = 490, normalized size = 2.37 \begin{align*} -\frac{1}{384} \,{\left (\frac{12 \,{\left (5 \, a^{3} + 3 \, a c^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right ) \right |}\right )}{c^{7}} - \frac{12 \,{\left (5 \, a^{4} + 3 \, a^{2} c^{2}\right )} \log \left ({\left | a \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right ) + c \right |}\right )}{a c^{7}} + \frac{60 \, a^{8} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{5} + 36 \, a^{6} c^{2} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{5} + 3 \, a^{2} c^{6} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{5} + 150 \, a^{7} c \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{4} + 90 \, a^{5} c^{3} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{4} + 3 \, a c^{7} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{4} + 110 \, a^{6} c^{2} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{3} + 66 \, a^{4} c^{4} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{3} + 3 \, a^{2} c^{6} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{3} + c^{8} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{3} + 15 \, a^{5} c^{3} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{2} + 9 \, a^{3} c^{5} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{2} - 3 \, a^{4} c^{4} \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right ) + a^{3} c^{5}}{{\left (a \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )^{2} + c \tan \left (\frac{1}{2} \, x e + \frac{1}{2} \, d\right )\right )}^{3} a^{3} c^{6}}\right )} e^{\left (-1\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a-2*a*cos(e*x+d)+2*c*sin(e*x+d))^4,x, algorithm="giac")

[Out]

-1/384*(12*(5*a^3 + 3*a*c^2)*log(abs(tan(1/2*x*e + 1/2*d)))/c^7 - 12*(5*a^4 + 3*a^2*c^2)*log(abs(a*tan(1/2*x*e
 + 1/2*d) + c))/(a*c^7) + (60*a^8*tan(1/2*x*e + 1/2*d)^5 + 36*a^6*c^2*tan(1/2*x*e + 1/2*d)^5 + 3*a^2*c^6*tan(1
/2*x*e + 1/2*d)^5 + 150*a^7*c*tan(1/2*x*e + 1/2*d)^4 + 90*a^5*c^3*tan(1/2*x*e + 1/2*d)^4 + 3*a*c^7*tan(1/2*x*e
 + 1/2*d)^4 + 110*a^6*c^2*tan(1/2*x*e + 1/2*d)^3 + 66*a^4*c^4*tan(1/2*x*e + 1/2*d)^3 + 3*a^2*c^6*tan(1/2*x*e +
 1/2*d)^3 + c^8*tan(1/2*x*e + 1/2*d)^3 + 15*a^5*c^3*tan(1/2*x*e + 1/2*d)^2 + 9*a^3*c^5*tan(1/2*x*e + 1/2*d)^2
- 3*a^4*c^4*tan(1/2*x*e + 1/2*d) + a^3*c^5)/((a*tan(1/2*x*e + 1/2*d)^2 + c*tan(1/2*x*e + 1/2*d))^3*a^3*c^6))*e
^(-1)