3.174 \(\int \frac{\sqrt{a-a \sin (e+f x)} (c+c \sin (e+f x))^{3/2}}{x} \, dx\)

Optimal. Leaf size=186 \[ \frac{1}{2} c \sin (2 e) \text{CosIntegral}(2 f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c}+c \cos (e) \text{CosIntegral}(f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c}-c \sin (e) \text{Si}(f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c}+\frac{1}{2} c \cos (2 e) \text{Si}(2 f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c} \]

[Out]

c*Cos[e]*CosIntegral[f*x]*Sec[e + f*x]*Sqrt[a - a*Sin[e + f*x]]*Sqrt[c + c*Sin[e + f*x]] + (c*CosIntegral[2*f*
x]*Sec[e + f*x]*Sin[2*e]*Sqrt[a - a*Sin[e + f*x]]*Sqrt[c + c*Sin[e + f*x]])/2 - c*Sec[e + f*x]*Sin[e]*Sqrt[a -
 a*Sin[e + f*x]]*Sqrt[c + c*Sin[e + f*x]]*SinIntegral[f*x] + (c*Cos[2*e]*Sec[e + f*x]*Sqrt[a - a*Sin[e + f*x]]
*Sqrt[c + c*Sin[e + f*x]]*SinIntegral[2*f*x])/2

________________________________________________________________________________________

Rubi [A]  time = 0.661755, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {4604, 6741, 12, 6742, 3303, 3299, 3302} \[ \frac{1}{2} c \sin (2 e) \text{CosIntegral}(2 f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c}+c \cos (e) \text{CosIntegral}(f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c}-c \sin (e) \text{Si}(f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c}+\frac{1}{2} c \cos (2 e) \text{Si}(2 f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c \sin (e+f x)+c} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a - a*Sin[e + f*x]]*(c + c*Sin[e + f*x])^(3/2))/x,x]

[Out]

c*Cos[e]*CosIntegral[f*x]*Sec[e + f*x]*Sqrt[a - a*Sin[e + f*x]]*Sqrt[c + c*Sin[e + f*x]] + (c*CosIntegral[2*f*
x]*Sec[e + f*x]*Sin[2*e]*Sqrt[a - a*Sin[e + f*x]]*Sqrt[c + c*Sin[e + f*x]])/2 - c*Sec[e + f*x]*Sin[e]*Sqrt[a -
 a*Sin[e + f*x]]*Sqrt[c + c*Sin[e + f*x]]*SinIntegral[f*x] + (c*Cos[2*e]*Sec[e + f*x]*Sqrt[a - a*Sin[e + f*x]]
*Sqrt[c + c*Sin[e + f*x]]*SinIntegral[2*f*x])/2

Rule 4604

Int[((g_.) + (h_.)*(x_))^(p_.)*((a_) + (b_.)*Sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*Sin[(e_.) + (f_.)*(x_
)])^(n_), x_Symbol] :> Dist[(a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*(c + d*Sin[e + f*x])^F
racPart[m])/Cos[e + f*x]^(2*FracPart[m]), Int[(g + h*x)^p*Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x],
 x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p] && IntegerQ
[2*m] && IGeQ[n - m, 0]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a-a \sin (e+f x)} (c+c \sin (e+f x))^{3/2}}{x} \, dx &=\left (\sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\cos (e+f x) (c+c \sin (e+f x))}{x} \, dx\\ &=\left (\sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{c \cos (e+f x) (1+\sin (e+f x))}{x} \, dx\\ &=\left (c \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\cos (e+f x) (1+\sin (e+f x))}{x} \, dx\\ &=\left (c \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \left (\frac{\cos (e+f x)}{x}+\frac{\sin (2 e+2 f x)}{2 x}\right ) \, dx\\ &=\frac{1}{2} \left (c \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\sin (2 e+2 f x)}{x} \, dx+\left (c \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\cos (e+f x)}{x} \, dx\\ &=\left (c \cos (e) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\cos (f x)}{x} \, dx+\frac{1}{2} \left (c \cos (2 e) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\sin (2 f x)}{x} \, dx-\left (c \sec (e+f x) \sin (e) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\sin (f x)}{x} \, dx+\frac{1}{2} \left (c \sec (e+f x) \sin (2 e) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}\right ) \int \frac{\cos (2 f x)}{x} \, dx\\ &=c \cos (e) \text{Ci}(f x) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}+\frac{1}{2} c \text{Ci}(2 f x) \sec (e+f x) \sin (2 e) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)}-c \sec (e+f x) \sin (e) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)} \text{Si}(f x)+\frac{1}{2} c \cos (2 e) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{c+c \sin (e+f x)} \text{Si}(2 f x)\\ \end{align*}

Mathematica [C]  time = 1.24243, size = 150, normalized size = 0.81 \[ \frac{c e^{-i (e-f x)} \sqrt{-i c e^{-i (e+f x)} \left (e^{i (e+f x)}+i\right )^2} \left (2 e^{i e} \text{ExpIntegralEi}(-i f x)+2 e^{3 i e} \text{ExpIntegralEi}(i f x)+i \left (\text{ExpIntegralEi}(-2 i f x)-e^{4 i e} \text{ExpIntegralEi}(2 i f x)\right )\right ) \sqrt{a-a \sin (e+f x)}}{2 \sqrt{2} \left (1+e^{2 i (e+f x)}\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a - a*Sin[e + f*x]]*(c + c*Sin[e + f*x])^(3/2))/x,x]

[Out]

(c*Sqrt[((-I)*c*(I + E^(I*(e + f*x)))^2)/E^(I*(e + f*x))]*(2*E^(I*e)*ExpIntegralEi[(-I)*f*x] + 2*E^((3*I)*e)*E
xpIntegralEi[I*f*x] + I*(ExpIntegralEi[(-2*I)*f*x] - E^((4*I)*e)*ExpIntegralEi[(2*I)*f*x]))*Sqrt[a - a*Sin[e +
 f*x]])/(2*Sqrt[2]*E^(I*(e - f*x))*(1 + E^((2*I)*(e + f*x))))

________________________________________________________________________________________

Maple [F]  time = 0.078, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x} \left ( c+c\sin \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}\sqrt{a-a\sin \left ( fx+e \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+c*sin(f*x+e))^(3/2)*(a-a*sin(f*x+e))^(1/2)/x,x)

[Out]

int((c+c*sin(f*x+e))^(3/2)*(a-a*sin(f*x+e))^(1/2)/x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a \sin \left (f x + e\right ) + a}{\left (c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+c*sin(f*x+e))^(3/2)*(a-a*sin(f*x+e))^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(-a*sin(f*x + e) + a)*(c*sin(f*x + e) + c)^(3/2)/x, x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+c*sin(f*x+e))^(3/2)*(a-a*sin(f*x+e))^(1/2)/x,x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+c*sin(f*x+e))**(3/2)*(a-a*sin(f*x+e))**(1/2)/x,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a \sin \left (f x + e\right ) + a}{\left (c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+c*sin(f*x+e))^(3/2)*(a-a*sin(f*x+e))^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(-a*sin(f*x + e) + a)*(c*sin(f*x + e) + c)^(3/2)/x, x)