3.159 \(\int \frac{\sec ^2(c+d x)}{a+b \tan ^2(c+d x)} \, dx\)

Optimal. Leaf size=32 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b} d} \]

[Out]

ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0547793, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3675, 205} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b} d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + b*Tan[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[b]*d)

Rule 3675

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{a+b \tan ^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b} d}\\ \end{align*}

Mathematica [A]  time = 0.0965612, size = 32, normalized size = 1. \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + b*Tan[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[b]*d)

________________________________________________________________________________________

Maple [A]  time = 0.065, size = 24, normalized size = 0.8 \begin{align*}{\frac{1}{d}\arctan \left ({\tan \left ( dx+c \right ) b{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*tan(d*x+c)^2),x)

[Out]

1/d/(a*b)^(1/2)*arctan(tan(d*x+c)*b/(a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*tan(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.88463, size = 487, normalized size = 15.22 \begin{align*} \left [-\frac{\sqrt{-a b} \log \left (\frac{{\left (a^{2} + 6 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \,{\left (3 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + 4 \,{\left ({\left (a + b\right )} \cos \left (d x + c\right )^{3} - b \cos \left (d x + c\right )\right )} \sqrt{-a b} \sin \left (d x + c\right ) + b^{2}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} + 2 \,{\left (a b - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right )}{4 \, a b d}, -\frac{\sqrt{a b} \arctan \left (\frac{{\left ({\left (a + b\right )} \cos \left (d x + c\right )^{2} - b\right )} \sqrt{a b}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right )}\right )}{2 \, a b d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*tan(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/4*sqrt(-a*b)*log(((a^2 + 6*a*b + b^2)*cos(d*x + c)^4 - 2*(3*a*b + b^2)*cos(d*x + c)^2 + 4*((a + b)*cos(d*x
 + c)^3 - b*cos(d*x + c))*sqrt(-a*b)*sin(d*x + c) + b^2)/((a^2 - 2*a*b + b^2)*cos(d*x + c)^4 + 2*(a*b - b^2)*c
os(d*x + c)^2 + b^2))/(a*b*d), -1/2*sqrt(a*b)*arctan(1/2*((a + b)*cos(d*x + c)^2 - b)*sqrt(a*b)/(a*b*cos(d*x +
 c)*sin(d*x + c)))/(a*b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{a + b \tan ^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*tan(d*x+c)**2),x)

[Out]

Integral(sec(c + d*x)**2/(a + b*tan(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.4661, size = 54, normalized size = 1.69 \begin{align*} \frac{\pi \left \lfloor \frac{d x + c}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (d x + c\right )}{\sqrt{a b}}\right )}{\sqrt{a b} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*tan(d*x+c)^2),x, algorithm="giac")

[Out]

(pi*floor((d*x + c)/pi + 1/2)*sgn(b) + arctan(b*tan(d*x + c)/sqrt(a*b)))/(sqrt(a*b)*d)