### 3.286 $$\int \frac{x^2}{x+\log (x)} \, dx$$

Optimal. Leaf size=12 $\text{CannotIntegrate}\left (\frac{x^2}{x+\log (x)},x\right )$

[Out]

CannotIntegrate[x^2/(x + Log[x]), x]

________________________________________________________________________________________

Rubi [A]  time = 0.0359061, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0., Rules used = {} $\int \frac{x^2}{x+\log (x)} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Int[x^2/(x + Log[x]),x]

[Out]

Defer[Int][x^2/(x + Log[x]), x]

Rubi steps

\begin{align*} \int \frac{x^2}{x+\log (x)} \, dx &=\int \frac{x^2}{x+\log (x)} \, dx\\ \end{align*}

Mathematica [A]  time = 6.5027, size = 0, normalized size = 0. $\int \frac{x^2}{x+\log (x)} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Integrate[x^2/(x + Log[x]),x]

[Out]

Integrate[x^2/(x + Log[x]), x]

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{2}}{x+\ln \left ( x \right ) }}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x+ln(x)),x)

[Out]

int(x^2/(x+ln(x)),x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{x + \log \left (x\right )}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x+log(x)),x, algorithm="maxima")

[Out]

integrate(x^2/(x + log(x)), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{2}}{x + \log \left (x\right )}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x+log(x)),x, algorithm="fricas")

[Out]

integral(x^2/(x + log(x)), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{x + \log{\left (x \right )}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(x+ln(x)),x)

[Out]

Integral(x**2/(x + log(x)), x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{x + \log \left (x\right )}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x+log(x)),x, algorithm="giac")

[Out]

integrate(x^2/(x + log(x)), x)