3.161 \(\int \log (a \sin (x)) \, dx\)

Optimal. Leaf size=47 \[ \frac{1}{2} i \text{PolyLog}\left (2,e^{2 i x}\right )+x \log (a \sin (x))+\frac{i x^2}{2}-x \log \left (1-e^{2 i x}\right ) \]

[Out]

(I/2)*x^2 - x*Log[1 - E^((2*I)*x)] + x*Log[a*Sin[x]] + (I/2)*PolyLog[2, E^((2*I)*x)]

________________________________________________________________________________________

Rubi [A]  time = 0.0573425, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 5, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 1., Rules used = {2548, 3717, 2190, 2279, 2391} \[ \frac{1}{2} i \text{PolyLog}\left (2,e^{2 i x}\right )+x \log (a \sin (x))+\frac{i x^2}{2}-x \log \left (1-e^{2 i x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Log[a*Sin[x]],x]

[Out]

(I/2)*x^2 - x*Log[1 - E^((2*I)*x)] + x*Log[a*Sin[x]] + (I/2)*PolyLog[2, E^((2*I)*x)]

Rule 2548

Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[(x*D[u, x])/u, x], x] /; InverseFunctionFr
eeQ[u, x]

Rule 3717

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*
(m + 1)), x] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*k*Pi)*E^(2*I*(e + f*x)))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \log (a \sin (x)) \, dx &=x \log (a \sin (x))-\int x \cot (x) \, dx\\ &=\frac{i x^2}{2}+x \log (a \sin (x))+2 i \int \frac{e^{2 i x} x}{1-e^{2 i x}} \, dx\\ &=\frac{i x^2}{2}-x \log \left (1-e^{2 i x}\right )+x \log (a \sin (x))+\int \log \left (1-e^{2 i x}\right ) \, dx\\ &=\frac{i x^2}{2}-x \log \left (1-e^{2 i x}\right )+x \log (a \sin (x))-\frac{1}{2} i \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{2 i x}\right )\\ &=\frac{i x^2}{2}-x \log \left (1-e^{2 i x}\right )+x \log (a \sin (x))+\frac{1}{2} i \text{Li}_2\left (e^{2 i x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0153099, size = 42, normalized size = 0.89 \[ \frac{1}{2} i \left (x^2+\text{PolyLog}\left (2,e^{2 i x}\right )\right )+x \log (a \sin (x))-x \log \left (1-e^{2 i x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Log[a*Sin[x]],x]

[Out]

-(x*Log[1 - E^((2*I)*x)]) + x*Log[a*Sin[x]] + (I/2)*(x^2 + PolyLog[2, E^((2*I)*x)])

________________________________________________________________________________________

Maple [B]  time = 0.033, size = 76, normalized size = 1.6 \begin{align*} -i\ln \left ({{\rm e}^{ix}} \right ) \ln \left ( 2\,a\sin \left ( x \right ) \right ) -{\frac{i}{2}} \left ( \ln \left ({{\rm e}^{ix}} \right ) \right ) ^{2}+i\ln \left ({{\rm e}^{ix}} \right ) \ln \left ({{\rm e}^{ix}}+1 \right ) +i{\it dilog} \left ({{\rm e}^{ix}}+1 \right ) -i{\it dilog} \left ({{\rm e}^{ix}} \right ) +i\ln \left ( 2 \right ) \ln \left ({{\rm e}^{ix}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(a*sin(x)),x)

[Out]

-I*ln(exp(I*x))*ln(2*a*sin(x))-1/2*I*ln(exp(I*x))^2+I*ln(exp(I*x))*ln(exp(I*x)+1)+I*dilog(exp(I*x)+1)-I*dilog(
exp(I*x))+I*ln(2)*ln(exp(I*x))

________________________________________________________________________________________

Maxima [B]  time = 2.17671, size = 117, normalized size = 2.49 \begin{align*} \frac{1}{2} i \, x^{2} - i \, x \arctan \left (\sin \left (x\right ), \cos \left (x\right ) + 1\right ) + i \, x \arctan \left (\sin \left (x\right ), -\cos \left (x\right ) + 1\right ) - \frac{1}{2} \, x \log \left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} + 2 \, \cos \left (x\right ) + 1\right ) - \frac{1}{2} \, x \log \left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} - 2 \, \cos \left (x\right ) + 1\right ) + x \log \left (a \sin \left (x\right )\right ) + i \,{\rm Li}_2\left (-e^{\left (i \, x\right )}\right ) + i \,{\rm Li}_2\left (e^{\left (i \, x\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(a*sin(x)),x, algorithm="maxima")

[Out]

1/2*I*x^2 - I*x*arctan2(sin(x), cos(x) + 1) + I*x*arctan2(sin(x), -cos(x) + 1) - 1/2*x*log(cos(x)^2 + sin(x)^2
 + 2*cos(x) + 1) - 1/2*x*log(cos(x)^2 + sin(x)^2 - 2*cos(x) + 1) + x*log(a*sin(x)) + I*dilog(-e^(I*x)) + I*dil
og(e^(I*x))

________________________________________________________________________________________

Fricas [B]  time = 2.22386, size = 396, normalized size = 8.43 \begin{align*} x \log \left (a \sin \left (x\right )\right ) - \frac{1}{2} \, x \log \left (\cos \left (x\right ) + i \, \sin \left (x\right ) + 1\right ) - \frac{1}{2} \, x \log \left (\cos \left (x\right ) - i \, \sin \left (x\right ) + 1\right ) - \frac{1}{2} \, x \log \left (-\cos \left (x\right ) + i \, \sin \left (x\right ) + 1\right ) - \frac{1}{2} \, x \log \left (-\cos \left (x\right ) - i \, \sin \left (x\right ) + 1\right ) + \frac{1}{2} i \,{\rm Li}_2\left (\cos \left (x\right ) + i \, \sin \left (x\right )\right ) - \frac{1}{2} i \,{\rm Li}_2\left (\cos \left (x\right ) - i \, \sin \left (x\right )\right ) - \frac{1}{2} i \,{\rm Li}_2\left (-\cos \left (x\right ) + i \, \sin \left (x\right )\right ) + \frac{1}{2} i \,{\rm Li}_2\left (-\cos \left (x\right ) - i \, \sin \left (x\right )\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(a*sin(x)),x, algorithm="fricas")

[Out]

x*log(a*sin(x)) - 1/2*x*log(cos(x) + I*sin(x) + 1) - 1/2*x*log(cos(x) - I*sin(x) + 1) - 1/2*x*log(-cos(x) + I*
sin(x) + 1) - 1/2*x*log(-cos(x) - I*sin(x) + 1) + 1/2*I*dilog(cos(x) + I*sin(x)) - 1/2*I*dilog(cos(x) - I*sin(
x)) - 1/2*I*dilog(-cos(x) + I*sin(x)) + 1/2*I*dilog(-cos(x) - I*sin(x))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \log{\left (a \sin{\left (x \right )} \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(a*sin(x)),x)

[Out]

Integral(log(a*sin(x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \log \left (a \sin \left (x\right )\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(a*sin(x)),x, algorithm="giac")

[Out]

integrate(log(a*sin(x)), x)