3.451 \(\int f^{a+b x+c x^2} (b+2 c x)^2 \, dx\)

Optimal. Leaf size=78 \[ \frac{(b+2 c x) f^{a+b x+c x^2}}{\log (f)}-\frac{\sqrt{\pi } \sqrt{c} f^{a-\frac{b^2}{4 c}} \text{Erfi}\left (\frac{\sqrt{\log (f)} (b+2 c x)}{2 \sqrt{c}}\right )}{\log ^{\frac{3}{2}}(f)} \]

[Out]

-((Sqrt[c]*f^(a - b^2/(4*c))*Sqrt[Pi]*Erfi[((b + 2*c*x)*Sqrt[Log[f]])/(2*Sqrt[c])])/Log[f]^(3/2)) + (f^(a + b*
x + c*x^2)*(b + 2*c*x))/Log[f]

________________________________________________________________________________________

Rubi [A]  time = 0.0555783, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2237, 2234, 2204} \[ \frac{(b+2 c x) f^{a+b x+c x^2}}{\log (f)}-\frac{\sqrt{\pi } \sqrt{c} f^{a-\frac{b^2}{4 c}} \text{Erfi}\left (\frac{\sqrt{\log (f)} (b+2 c x)}{2 \sqrt{c}}\right )}{\log ^{\frac{3}{2}}(f)} \]

Antiderivative was successfully verified.

[In]

Int[f^(a + b*x + c*x^2)*(b + 2*c*x)^2,x]

[Out]

-((Sqrt[c]*f^(a - b^2/(4*c))*Sqrt[Pi]*Erfi[((b + 2*c*x)*Sqrt[Log[f]])/(2*Sqrt[c])])/Log[f]^(3/2)) + (f^(a + b*
x + c*x^2)*(b + 2*c*x))/Log[f]

Rule 2237

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*F^(a + b*x + c*x^2))/(2*c*Log[F]), x] - Dist[((m - 1)*e^2)/(2*c*Log[F]), Int[(d + e*x)^(m - 2)*F^(a + b*x + c
*x^2), x], x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] && GtQ[m, 1]

Rule 2234

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rubi steps

\begin{align*} \int f^{a+b x+c x^2} (b+2 c x)^2 \, dx &=\frac{f^{a+b x+c x^2} (b+2 c x)}{\log (f)}-\frac{(2 c) \int f^{a+b x+c x^2} \, dx}{\log (f)}\\ &=\frac{f^{a+b x+c x^2} (b+2 c x)}{\log (f)}-\frac{\left (2 c f^{a-\frac{b^2}{4 c}}\right ) \int f^{\frac{(b+2 c x)^2}{4 c}} \, dx}{\log (f)}\\ &=-\frac{\sqrt{c} f^{a-\frac{b^2}{4 c}} \sqrt{\pi } \text{erfi}\left (\frac{(b+2 c x) \sqrt{\log (f)}}{2 \sqrt{c}}\right )}{\log ^{\frac{3}{2}}(f)}+\frac{f^{a+b x+c x^2} (b+2 c x)}{\log (f)}\\ \end{align*}

Mathematica [A]  time = 0.104872, size = 86, normalized size = 1.1 \[ \frac{f^{a-\frac{b^2}{4 c}} \left (\sqrt{\log (f)} (b+2 c x) f^{\frac{(b+2 c x)^2}{4 c}}-\sqrt{\pi } \sqrt{c} \text{Erfi}\left (\frac{\sqrt{\log (f)} (b+2 c x)}{2 \sqrt{c}}\right )\right )}{\log ^{\frac{3}{2}}(f)} \]

Antiderivative was successfully verified.

[In]

Integrate[f^(a + b*x + c*x^2)*(b + 2*c*x)^2,x]

[Out]

(f^(a - b^2/(4*c))*(-(Sqrt[c]*Sqrt[Pi]*Erfi[((b + 2*c*x)*Sqrt[Log[f]])/(2*Sqrt[c])]) + f^((b + 2*c*x)^2/(4*c))
*(b + 2*c*x)*Sqrt[Log[f]]))/Log[f]^(3/2)

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 99, normalized size = 1.3 \begin{align*} 2\,{\frac{cx{f}^{c{x}^{2}}{f}^{bx}{f}^{a}}{\ln \left ( f \right ) }}+{\frac{b{f}^{c{x}^{2}}{f}^{bx}{f}^{a}}{\ln \left ( f \right ) }}+{\frac{c\sqrt{\pi }{f}^{a}}{\ln \left ( f \right ) }{f}^{-{\frac{{b}^{2}}{4\,c}}}{\it Erf} \left ( -\sqrt{-c\ln \left ( f \right ) }x+{\frac{b\ln \left ( f \right ) }{2}{\frac{1}{\sqrt{-c\ln \left ( f \right ) }}}} \right ){\frac{1}{\sqrt{-c\ln \left ( f \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(f^(c*x^2+b*x+a)*(2*c*x+b)^2,x)

[Out]

2*c/ln(f)*x*f^(c*x^2)*f^(b*x)*f^a+b/ln(f)*f^(c*x^2)*f^(b*x)*f^a+c/ln(f)*Pi^(1/2)*f^a*f^(-1/4*b^2/c)/(-c*ln(f))
^(1/2)*erf(-(-c*ln(f))^(1/2)*x+1/2*b*ln(f)/(-c*ln(f))^(1/2))

________________________________________________________________________________________

Maxima [B]  time = 1.25482, size = 448, normalized size = 5.74 \begin{align*} -\frac{{\left (\frac{\sqrt{\pi }{\left (2 \, c x + b\right )} b{\left (\operatorname{erf}\left (\frac{1}{2} \, \sqrt{-\frac{{\left (2 \, c x + b\right )}^{2} \log \left (f\right )}{c}}\right ) - 1\right )} \log \left (f\right )^{2}}{\sqrt{-\frac{{\left (2 \, c x + b\right )}^{2} \log \left (f\right )}{c}} \left (c \log \left (f\right )\right )^{\frac{3}{2}}} - \frac{2 \, c f^{\frac{{\left (2 \, c x + b\right )}^{2}}{4 \, c}} \log \left (f\right )}{\left (c \log \left (f\right )\right )^{\frac{3}{2}}}\right )} b c f^{a - \frac{b^{2}}{4 \, c}}}{\sqrt{c \log \left (f\right )}} + \frac{{\left (\frac{\sqrt{\pi }{\left (2 \, c x + b\right )} b^{2}{\left (\operatorname{erf}\left (\frac{1}{2} \, \sqrt{-\frac{{\left (2 \, c x + b\right )}^{2} \log \left (f\right )}{c}}\right ) - 1\right )} \log \left (f\right )^{3}}{\sqrt{-\frac{{\left (2 \, c x + b\right )}^{2} \log \left (f\right )}{c}} \left (c \log \left (f\right )\right )^{\frac{5}{2}}} - \frac{4 \,{\left (2 \, c x + b\right )}^{3} \Gamma \left (\frac{3}{2}, -\frac{{\left (2 \, c x + b\right )}^{2} \log \left (f\right )}{4 \, c}\right ) \log \left (f\right )^{3}}{\left (-\frac{{\left (2 \, c x + b\right )}^{2} \log \left (f\right )}{c}\right )^{\frac{3}{2}} \left (c \log \left (f\right )\right )^{\frac{5}{2}}} - \frac{4 \, b c f^{\frac{{\left (2 \, c x + b\right )}^{2}}{4 \, c}} \log \left (f\right )^{2}}{\left (c \log \left (f\right )\right )^{\frac{5}{2}}}\right )} c^{2} f^{a - \frac{b^{2}}{4 \, c}}}{2 \, \sqrt{c \log \left (f\right )}} + \frac{\sqrt{\pi } b^{2} f^{a} \operatorname{erf}\left (\sqrt{-c \log \left (f\right )} x - \frac{b \log \left (f\right )}{2 \, \sqrt{-c \log \left (f\right )}}\right )}{2 \, \sqrt{-c \log \left (f\right )} f^{\frac{b^{2}}{4 \, c}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+b*x+a)*(2*c*x+b)^2,x, algorithm="maxima")

[Out]

-(sqrt(pi)*(2*c*x + b)*b*(erf(1/2*sqrt(-(2*c*x + b)^2*log(f)/c)) - 1)*log(f)^2/(sqrt(-(2*c*x + b)^2*log(f)/c)*
(c*log(f))^(3/2)) - 2*c*f^(1/4*(2*c*x + b)^2/c)*log(f)/(c*log(f))^(3/2))*b*c*f^(a - 1/4*b^2/c)/sqrt(c*log(f))
+ 1/2*(sqrt(pi)*(2*c*x + b)*b^2*(erf(1/2*sqrt(-(2*c*x + b)^2*log(f)/c)) - 1)*log(f)^3/(sqrt(-(2*c*x + b)^2*log
(f)/c)*(c*log(f))^(5/2)) - 4*(2*c*x + b)^3*gamma(3/2, -1/4*(2*c*x + b)^2*log(f)/c)*log(f)^3/((-(2*c*x + b)^2*l
og(f)/c)^(3/2)*(c*log(f))^(5/2)) - 4*b*c*f^(1/4*(2*c*x + b)^2/c)*log(f)^2/(c*log(f))^(5/2))*c^2*f^(a - 1/4*b^2
/c)/sqrt(c*log(f)) + 1/2*sqrt(pi)*b^2*f^a*erf(sqrt(-c*log(f))*x - 1/2*b*log(f)/sqrt(-c*log(f)))/(sqrt(-c*log(f
))*f^(1/4*b^2/c))

________________________________________________________________________________________

Fricas [A]  time = 1.53933, size = 190, normalized size = 2.44 \begin{align*} \frac{{\left (2 \, c x + b\right )} f^{c x^{2} + b x + a} \log \left (f\right ) + \frac{\sqrt{\pi } \sqrt{-c \log \left (f\right )} \operatorname{erf}\left (\frac{{\left (2 \, c x + b\right )} \sqrt{-c \log \left (f\right )}}{2 \, c}\right )}{f^{\frac{b^{2} - 4 \, a c}{4 \, c}}}}{\log \left (f\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+b*x+a)*(2*c*x+b)^2,x, algorithm="fricas")

[Out]

((2*c*x + b)*f^(c*x^2 + b*x + a)*log(f) + sqrt(pi)*sqrt(-c*log(f))*erf(1/2*(2*c*x + b)*sqrt(-c*log(f))/c)/f^(1
/4*(b^2 - 4*a*c)/c))/log(f)^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int f^{a + b x + c x^{2}} \left (b + 2 c x\right )^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f**(c*x**2+b*x+a)*(2*c*x+b)**2,x)

[Out]

Integral(f**(a + b*x + c*x**2)*(b + 2*c*x)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.33836, size = 119, normalized size = 1.53 \begin{align*} \frac{c{\left (2 \, x + \frac{b}{c}\right )} e^{\left (c x^{2} \log \left (f\right ) + b x \log \left (f\right ) + a \log \left (f\right )\right )}}{\log \left (f\right )} + \frac{\sqrt{\pi } c \operatorname{erf}\left (-\frac{1}{2} \, \sqrt{-c \log \left (f\right )}{\left (2 \, x + \frac{b}{c}\right )}\right ) e^{\left (-\frac{b^{2} \log \left (f\right ) - 4 \, a c \log \left (f\right )}{4 \, c}\right )}}{\sqrt{-c \log \left (f\right )} \log \left (f\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+b*x+a)*(2*c*x+b)^2,x, algorithm="giac")

[Out]

c*(2*x + b/c)*e^(c*x^2*log(f) + b*x*log(f) + a*log(f))/log(f) + sqrt(pi)*c*erf(-1/2*sqrt(-c*log(f))*(2*x + b/c
))*e^(-1/4*(b^2*log(f) - 4*a*c*log(f))/c)/(sqrt(-c*log(f))*log(f))