3.371 \(\int F^{a+b (c+d x)^n} (c+d x)^{-1+3 n} \, dx\)

Optimal. Leaf size=100 \[ -\frac{2 (c+d x)^n F^{a+b (c+d x)^n}}{b^2 d n \log ^2(F)}+\frac{2 F^{a+b (c+d x)^n}}{b^3 d n \log ^3(F)}+\frac{(c+d x)^{2 n} F^{a+b (c+d x)^n}}{b d n \log (F)} \]

[Out]

(2*F^(a + b*(c + d*x)^n))/(b^3*d*n*Log[F]^3) - (2*F^(a + b*(c + d*x)^n)*(c + d*x)^n)/(b^2*d*n*Log[F]^2) + (F^(
a + b*(c + d*x)^n)*(c + d*x)^(2*n))/(b*d*n*Log[F])

________________________________________________________________________________________

Rubi [A]  time = 0.119527, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {2213, 2209} \[ -\frac{2 (c+d x)^n F^{a+b (c+d x)^n}}{b^2 d n \log ^2(F)}+\frac{2 F^{a+b (c+d x)^n}}{b^3 d n \log ^3(F)}+\frac{(c+d x)^{2 n} F^{a+b (c+d x)^n}}{b d n \log (F)} \]

Antiderivative was successfully verified.

[In]

Int[F^(a + b*(c + d*x)^n)*(c + d*x)^(-1 + 3*n),x]

[Out]

(2*F^(a + b*(c + d*x)^n))/(b^3*d*n*Log[F]^3) - (2*F^(a + b*(c + d*x)^n)*(c + d*x)^n)/(b^2*d*n*Log[F]^2) + (F^(
a + b*(c + d*x)^n)*(c + d*x)^(2*n))/(b*d*n*Log[F])

Rule 2213

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
 - n + 1)*F^(a + b*(c + d*x)^n))/(b*d*n*Log[F]), x] - Dist[(m - n + 1)/(b*n*Log[F]), Int[(c + d*x)^Simplify[m
- n]*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d, m, n}, x] && IntegerQ[2*Simplify[(m + 1)/n]] && Lt
Q[0, Simplify[(m + 1)/n], 5] &&  !RationalQ[m] && SumSimplerQ[m, -n]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps

\begin{align*} \int F^{a+b (c+d x)^n} (c+d x)^{-1+3 n} \, dx &=\frac{F^{a+b (c+d x)^n} (c+d x)^{2 n}}{b d n \log (F)}-\frac{2 \int F^{a+b (c+d x)^n} (c+d x)^{-1+2 n} \, dx}{b \log (F)}\\ &=-\frac{2 F^{a+b (c+d x)^n} (c+d x)^n}{b^2 d n \log ^2(F)}+\frac{F^{a+b (c+d x)^n} (c+d x)^{2 n}}{b d n \log (F)}+\frac{2 \int F^{a+b (c+d x)^n} (c+d x)^{-1+n} \, dx}{b^2 \log ^2(F)}\\ &=\frac{2 F^{a+b (c+d x)^n}}{b^3 d n \log ^3(F)}-\frac{2 F^{a+b (c+d x)^n} (c+d x)^n}{b^2 d n \log ^2(F)}+\frac{F^{a+b (c+d x)^n} (c+d x)^{2 n}}{b d n \log (F)}\\ \end{align*}

Mathematica [C]  time = 0.0065167, size = 31, normalized size = 0.31 \[ \frac{F^a \text{Gamma}\left (3,-b \log (F) (c+d x)^n\right )}{b^3 d n \log ^3(F)} \]

Antiderivative was successfully verified.

[In]

Integrate[F^(a + b*(c + d*x)^n)*(c + d*x)^(-1 + 3*n),x]

[Out]

(F^a*Gamma[3, -(b*(c + d*x)^n*Log[F])])/(b^3*d*n*Log[F]^3)

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 59, normalized size = 0.6 \begin{align*}{\frac{ \left ( \left ( \left ( dx+c \right ) ^{n} \right ) ^{2}{b}^{2} \left ( \ln \left ( F \right ) \right ) ^{2}-2\,b \left ( dx+c \right ) ^{n}\ln \left ( F \right ) +2 \right ){F}^{a+b \left ( dx+c \right ) ^{n}}}{ \left ( \ln \left ( F \right ) \right ) ^{3}{b}^{3}nd}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(F^(a+b*(d*x+c)^n)*(d*x+c)^(-1+3*n),x)

[Out]

(((d*x+c)^n)^2*b^2*ln(F)^2-2*b*(d*x+c)^n*ln(F)+2)/b^3/ln(F)^3/n/d*F^(a+b*(d*x+c)^n)

________________________________________________________________________________________

Maxima [A]  time = 1.04473, size = 89, normalized size = 0.89 \begin{align*} \frac{{\left ({\left (d x + c\right )}^{2 \, n} F^{a} b^{2} \log \left (F\right )^{2} - 2 \,{\left (d x + c\right )}^{n} F^{a} b \log \left (F\right ) + 2 \, F^{a}\right )} F^{{\left (d x + c\right )}^{n} b}}{b^{3} d n \log \left (F\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(F^(a+b*(d*x+c)^n)*(d*x+c)^(-1+3*n),x, algorithm="maxima")

[Out]

((d*x + c)^(2*n)*F^a*b^2*log(F)^2 - 2*(d*x + c)^n*F^a*b*log(F) + 2*F^a)*F^((d*x + c)^n*b)/(b^3*d*n*log(F)^3)

________________________________________________________________________________________

Fricas [A]  time = 1.56674, size = 157, normalized size = 1.57 \begin{align*} \frac{{\left ({\left (d x + c\right )}^{2 \, n} b^{2} \log \left (F\right )^{2} - 2 \,{\left (d x + c\right )}^{n} b \log \left (F\right ) + 2\right )} e^{\left ({\left (d x + c\right )}^{n} b \log \left (F\right ) + a \log \left (F\right )\right )}}{b^{3} d n \log \left (F\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(F^(a+b*(d*x+c)^n)*(d*x+c)^(-1+3*n),x, algorithm="fricas")

[Out]

((d*x + c)^(2*n)*b^2*log(F)^2 - 2*(d*x + c)^n*b*log(F) + 2)*e^((d*x + c)^n*b*log(F) + a*log(F))/(b^3*d*n*log(F
)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(F**(a+b*(d*x+c)**n)*(d*x+c)**(-1+3*n),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (d x + c\right )}^{3 \, n - 1} F^{{\left (d x + c\right )}^{n} b + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(F^(a+b*(d*x+c)^n)*(d*x+c)^(-1+3*n),x, algorithm="giac")

[Out]

integrate((d*x + c)^(3*n - 1)*F^((d*x + c)^n*b + a), x)