3.797 \(\int \frac{1}{(8+8 x-x^3+8 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=431 \[ -\frac{\left (66-\left (\frac{4}{x}+1\right )^2\right ) x^2}{1008 \sqrt{8 x^4-x^3+8 x+8}}+\frac{\left (216-7 \left (\frac{4}{x}+1\right )^2\right ) \left (\frac{4}{x}+1\right ) x^2}{12528 \sqrt{8 x^4-x^3+8 x+8}}+\frac{7 \left (\left (\frac{4}{x}+1\right )^4-6 \left (\frac{4}{x}+1\right )^2+261\right ) \left (\frac{4}{x}+1\right ) x^2}{432 \sqrt{29} \sqrt{8 x^4-x^3+8 x+8} \left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right )}+\frac{\left (14-5 \sqrt{29}\right ) \sqrt{\frac{\left (\frac{4}{x}+1\right )^4-6 \left (\frac{4}{x}+1\right )^2+261}{\left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right )^2}} \left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right ) x^2 F\left (2 \tan ^{-1}\left (\frac{x+4}{\sqrt{3} \sqrt [4]{29} x}\right )|\frac{1}{58} \left (29+\sqrt{29}\right )\right )}{576 \sqrt{3} 29^{3/4} \sqrt{8 x^4-x^3+8 x+8}}-\frac{7 \sqrt{\frac{\left (\frac{4}{x}+1\right )^4-6 \left (\frac{4}{x}+1\right )^2+261}{\left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right )^2}} \left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right ) x^2 E\left (2 \tan ^{-1}\left (\frac{x+4}{\sqrt{3} \sqrt [4]{29} x}\right )|\frac{1}{58} \left (29+\sqrt{29}\right )\right )}{144 \sqrt{3} 29^{3/4} \sqrt{8 x^4-x^3+8 x+8}} \]

[Out]

-((66 - (1 + 4/x)^2)*x^2)/(1008*Sqrt[8 + 8*x - x^3 + 8*x^4]) + ((216 - 7*(1 + 4/x)^2)*(1 + 4/x)*x^2)/(12528*Sq
rt[8 + 8*x - x^3 + 8*x^4]) + (7*(261 - 6*(1 + 4/x)^2 + (1 + 4/x)^4)*(1 + 4/x)*x^2)/(432*Sqrt[29]*Sqrt[8 + 8*x
- x^3 + 8*x^4]*(87 + (Sqrt[29]*(4 + x)^2)/x^2)) - (7*x^2*Sqrt[(261 - 6*(1 + 4/x)^2 + (1 + 4/x)^4)/(87 + (Sqrt[
29]*(4 + x)^2)/x^2)^2]*(87 + (Sqrt[29]*(4 + x)^2)/x^2)*EllipticE[2*ArcTan[(4 + x)/(Sqrt[3]*29^(1/4)*x)], (29 +
 Sqrt[29])/58])/(144*Sqrt[3]*29^(3/4)*Sqrt[8 + 8*x - x^3 + 8*x^4]) + ((14 - 5*Sqrt[29])*x^2*Sqrt[(261 - 6*(1 +
 4/x)^2 + (1 + 4/x)^4)/(87 + (Sqrt[29]*(4 + x)^2)/x^2)^2]*(87 + (Sqrt[29]*(4 + x)^2)/x^2)*EllipticF[2*ArcTan[(
4 + x)/(Sqrt[3]*29^(1/4)*x)], (29 + Sqrt[29])/58])/(576*Sqrt[3]*29^(3/4)*Sqrt[8 + 8*x - x^3 + 8*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.528148, antiderivative size = 431, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.526, Rules used = {2069, 12, 6719, 1673, 1678, 1197, 1103, 1195, 1247, 636} \[ -\frac{\left (66-\left (\frac{4}{x}+1\right )^2\right ) x^2}{1008 \sqrt{8 x^4-x^3+8 x+8}}+\frac{\left (216-7 \left (\frac{4}{x}+1\right )^2\right ) \left (\frac{4}{x}+1\right ) x^2}{12528 \sqrt{8 x^4-x^3+8 x+8}}+\frac{7 \left (\left (\frac{4}{x}+1\right )^4-6 \left (\frac{4}{x}+1\right )^2+261\right ) \left (\frac{4}{x}+1\right ) x^2}{432 \sqrt{29} \sqrt{8 x^4-x^3+8 x+8} \left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right )}+\frac{\left (14-5 \sqrt{29}\right ) \sqrt{\frac{\left (\frac{4}{x}+1\right )^4-6 \left (\frac{4}{x}+1\right )^2+261}{\left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right )^2}} \left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right ) x^2 F\left (2 \tan ^{-1}\left (\frac{x+4}{\sqrt{3} \sqrt [4]{29} x}\right )|\frac{1}{58} \left (29+\sqrt{29}\right )\right )}{576 \sqrt{3} 29^{3/4} \sqrt{8 x^4-x^3+8 x+8}}-\frac{7 \sqrt{\frac{\left (\frac{4}{x}+1\right )^4-6 \left (\frac{4}{x}+1\right )^2+261}{\left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right )^2}} \left (\frac{\sqrt{29} (x+4)^2}{x^2}+87\right ) x^2 E\left (2 \tan ^{-1}\left (\frac{x+4}{\sqrt{3} \sqrt [4]{29} x}\right )|\frac{1}{58} \left (29+\sqrt{29}\right )\right )}{144 \sqrt{3} 29^{3/4} \sqrt{8 x^4-x^3+8 x+8}} \]

Antiderivative was successfully verified.

[In]

Int[(8 + 8*x - x^3 + 8*x^4)^(-3/2),x]

[Out]

-((66 - (1 + 4/x)^2)*x^2)/(1008*Sqrt[8 + 8*x - x^3 + 8*x^4]) + ((216 - 7*(1 + 4/x)^2)*(1 + 4/x)*x^2)/(12528*Sq
rt[8 + 8*x - x^3 + 8*x^4]) + (7*(261 - 6*(1 + 4/x)^2 + (1 + 4/x)^4)*(1 + 4/x)*x^2)/(432*Sqrt[29]*Sqrt[8 + 8*x
- x^3 + 8*x^4]*(87 + (Sqrt[29]*(4 + x)^2)/x^2)) - (7*x^2*Sqrt[(261 - 6*(1 + 4/x)^2 + (1 + 4/x)^4)/(87 + (Sqrt[
29]*(4 + x)^2)/x^2)^2]*(87 + (Sqrt[29]*(4 + x)^2)/x^2)*EllipticE[2*ArcTan[(4 + x)/(Sqrt[3]*29^(1/4)*x)], (29 +
 Sqrt[29])/58])/(144*Sqrt[3]*29^(3/4)*Sqrt[8 + 8*x - x^3 + 8*x^4]) + ((14 - 5*Sqrt[29])*x^2*Sqrt[(261 - 6*(1 +
 4/x)^2 + (1 + 4/x)^4)/(87 + (Sqrt[29]*(4 + x)^2)/x^2)^2]*(87 + (Sqrt[29]*(4 + x)^2)/x^2)*EllipticF[2*ArcTan[(
4 + x)/(Sqrt[3]*29^(1/4)*x)], (29 + Sqrt[29])/58])/(576*Sqrt[3]*29^(3/4)*Sqrt[8 + 8*x - x^3 + 8*x^4])

Rule 2069

Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1], c = Coeff[P4, x, 2], d = Coeff[P4
, x, 3], e = Coeff[P4, x, 4]}, Dist[-16*a^2, Subst[Int[(1*((a*(-3*b^4 + 16*a*b^2*c - 64*a^2*b*d + 256*a^3*e -
32*a^2*(3*b^2 - 8*a*c)*x^2 + 256*a^4*x^4))/(b - 4*a*x)^4)^p)/(b - 4*a*x)^2, x], x, b/(4*a) + 1/x], x] /; NeQ[a
, 0] && NeQ[b, 0] && EqQ[b^3 - 4*a*b*c + 8*a^2*d, 0]] /; FreeQ[p, x] && PolyQ[P4, x, 4] && IntegerQ[2*p] &&  !
IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1678

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = Coeff[PolynomialRemainder[Pq, a +
b*x^2 + c*x^4, x], x, 0], e = Coeff[PolynomialRemainder[Pq, a + b*x^2 + c*x^4, x], x, 2]}, Simp[(x*(a + b*x^2
+ c*x^4)^(p + 1)*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*
a*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuot
ient[Pq, a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4*p + 7)*(b*d - 2*a*e)*x^2,
x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1
]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 636

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2*(b*d - 2*a*e + (2*c*
d - b*e)*x))/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (8+8 x-x^3+8 x^4\right )^{3/2}} \, dx &=-\left (1024 \operatorname{Subst}\left (\int \frac{1}{16 \sqrt{2} (8-32 x)^2 \left (\frac{1069056-393216 x^2+1048576 x^4}{(8-32 x)^4}\right )^{3/2}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )\right )\\ &=-\left (\left (32 \sqrt{2}\right ) \operatorname{Subst}\left (\int \frac{1}{(8-32 x)^2 \left (\frac{1069056-393216 x^2+1048576 x^4}{(8-32 x)^4}\right )^{3/2}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )\right )\\ &=-\frac{\left (\sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{(8-32 x)^4}{\left (1069056-393216 x^2+1048576 x^4\right )^{3/2}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )}{8 \sqrt{8+8 x-x^3+8 x^4}}\\ &=-\frac{\left (\sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{x \left (-65536-1048576 x^2\right )}{\left (1069056-393216 x^2+1048576 x^4\right )^{3/2}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )}{8 \sqrt{8+8 x-x^3+8 x^4}}-\frac{\left (\sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{4096+393216 x^2+1048576 x^4}{\left (1069056-393216 x^2+1048576 x^4\right )^{3/2}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )}{8 \sqrt{8+8 x-x^3+8 x^4}}\\ &=\frac{\left (216-7 \left (1+\frac{4}{x}\right )^2\right ) \left (1+\frac{4}{x}\right ) x^2}{12528 \sqrt{8+8 x-x^3+8 x^4}}-\frac{\left (\sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{2571273912251842560-1324058290446925824 x^2}{\sqrt{1069056-393216 x^2+1048576 x^4}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )}{37026344336426532864 \sqrt{8+8 x-x^3+8 x^4}}-\frac{\left (\sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{-65536-1048576 x}{\left (1069056-393216 x+1048576 x^2\right )^{3/2}} \, dx,x,\left (\frac{1}{4}+\frac{1}{x}\right )^2\right )}{16 \sqrt{8+8 x-x^3+8 x^4}}\\ &=-\frac{\left (66-\left (1+\frac{4}{x}\right )^2\right ) x^2}{1008 \sqrt{8+8 x-x^3+8 x^4}}+\frac{\left (216-7 \left (1+\frac{4}{x}\right )^2\right ) \left (1+\frac{4}{x}\right ) x^2}{12528 \sqrt{8+8 x-x^3+8 x^4}}-\frac{\left (7 \sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{1-\frac{16 x^2}{3 \sqrt{29}}}{\sqrt{1069056-393216 x^2+1048576 x^4}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )}{36 \sqrt{29} \sqrt{8+8 x-x^3+8 x^4}}-\frac{\left (\left (145-14 \sqrt{29}\right ) \sqrt{1069056-393216 \left (\frac{1}{4}+\frac{1}{x}\right )^2+1048576 \left (\frac{1}{4}+\frac{1}{x}\right )^4} x^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1069056-393216 x^2+1048576 x^4}} \, dx,x,\frac{1}{4}+\frac{1}{x}\right )}{2088 \sqrt{8+8 x-x^3+8 x^4}}\\ &=-\frac{\left (66-\left (1+\frac{4}{x}\right )^2\right ) x^2}{1008 \sqrt{8+8 x-x^3+8 x^4}}+\frac{\left (216-7 \left (1+\frac{4}{x}\right )^2\right ) \left (1+\frac{4}{x}\right ) x^2}{12528 \sqrt{8+8 x-x^3+8 x^4}}+\frac{7 \left (261-6 \left (1+\frac{4}{x}\right )^2+\left (1+\frac{4}{x}\right )^4\right ) \left (1+\frac{4}{x}\right ) x^2}{432 \sqrt{29} \sqrt{8+8 x-x^3+8 x^4} \left (87+\frac{\sqrt{29} (4+x)^2}{x^2}\right )}-\frac{7 x^2 \sqrt{\frac{261-6 \left (1+\frac{4}{x}\right )^2+\left (1+\frac{4}{x}\right )^4}{\left (87+\frac{\sqrt{29} (4+x)^2}{x^2}\right )^2}} \left (87+\frac{\sqrt{29} (4+x)^2}{x^2}\right ) E\left (2 \tan ^{-1}\left (\frac{4+x}{\sqrt{3} \sqrt [4]{29} x}\right )|\frac{1}{58} \left (29+\sqrt{29}\right )\right )}{144 \sqrt{3} 29^{3/4} \sqrt{8+8 x-x^3+8 x^4}}+\frac{\left (14-5 \sqrt{29}\right ) x^2 \sqrt{\frac{261-6 \left (1+\frac{4}{x}\right )^2+\left (1+\frac{4}{x}\right )^4}{\left (87+\frac{\sqrt{29} (4+x)^2}{x^2}\right )^2}} \left (87+\frac{\sqrt{29} (4+x)^2}{x^2}\right ) F\left (2 \tan ^{-1}\left (\frac{4+x}{\sqrt{3} \sqrt [4]{29} x}\right )|\frac{1}{58} \left (29+\sqrt{29}\right )\right )}{576 \sqrt{3} 29^{3/4} \sqrt{8+8 x-x^3+8 x^4}}\\ \end{align*}

Mathematica [C]  time = 6.04711, size = 4865, normalized size = 11.29 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[(8 + 8*x - x^3 + 8*x^4)^(-3/2),x]

[Out]

(544 + 1539*x - 1146*x^2 + 784*x^3)/(21924*Sqrt[8 + 8*x - x^3 + 8*x^4]) + ((28*(x - Root[8 + 8*#1 - #1^3 + 8*#
1^4 & , 2, 0])^2*(-(EllipticF[ArcSin[Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3
 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])
*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]], -(((Root[8 + 8*#1 - #
1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - R
oot[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8
*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])))]*Root[8
 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0]) + EllipticPi[(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1
^3 + 8*#1^4 & , 4, 0])/(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]), A
rcSin[Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 +
8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4
 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]], -(((Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8
 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 &
, 4, 0]))/((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1
 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])))]*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1
, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0]))*Sqrt[((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*
#1 - #1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1
^4 & , 2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0]))]*(Root[8 +
 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])*Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8
*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Ro
ot[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^
4 & , 4, 0]))]*Sqrt[((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(x -
 Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(-Root[8 + 8*#1 - #1
^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))])/(Sqrt[8 + 8*x - x^3 + 8*x^4]*(-Root[8 + 8*
#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2,
0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])) + (842*EllipticF[ArcSin[Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^
4 & , 1, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[
8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4
& , 4, 0]))]], ((Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 +
8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((Root[8 + 8*#1 - #1^3 + 8*#1^4 & ,
 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #
1^3 + 8*#1^4 & , 4, 0]))]*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])^2*Sqrt[((-Root[8 + 8*#1 - #1^3 + 8*#1^
4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0]))/((x - Ro
ot[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1
^4 & , 3, 0]))]*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])*Sqrt[((-Ro
ot[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 + 8*#1 - #1^3 + 8
*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + R
oot[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]*Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(-Root[8 + 8*#1
- #1^3 + 8*#1^4 & , 2, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & ,
2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))])/(Sqrt[8 + 8*x -
 x^3 + 8*x^4]*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(-Root[8 +
8*#1 - #1^3 + 8*#1^4 & , 2, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])) - (224*((x - Root[8 + 8*#1 - #1^3 +
 8*#1^4 & , 1, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])
 + (x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])^2*Sqrt[((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 +
8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*
#1^4 & , 2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0]))]*Sqrt[((
x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 +
 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] -
Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]*Sqrt[((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #
1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & ,
 2, 0])*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]*(-Root[8 + 8*#1
 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])*((EllipticE[ArcSin[Sqrt[((x - Root[8 + 8
*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4,
 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1
- #1^3 + 8*#1^4 & , 4, 0]))]], -(((Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & ,
 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((-Root[8 + 8*#1
- #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0]
- Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])))]*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3
 + 8*#1^4 & , 3, 0]))/(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0]) + (
EllipticF[ArcSin[Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0]
- Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1
^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]], -(((Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2,
0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3
+ 8*#1^4 & , 4, 0]))/((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Ro
ot[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])))]*(Root[8 + 8*#1 - #1^3 + 8*
#1^4 & , 2, 0]*(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]) - Root[8 +
 8*#1 - #1^3 + 8*#1^4 & , 1, 0]*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4
, 0])))/((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(-Root[8 + 8*#1
- #1^3 + 8*#1^4 & , 2, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])) - (EllipticPi[(-Root[8 + 8*#1 - #1^3 + 8
*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])/(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] + Root[8
+ 8*#1 - #1^3 + 8*#1^4 & , 4, 0]), ArcSin[Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 -
 #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2
, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]], -(((Root[8 + 8*#
1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0
] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] + Root[8 + 8*#1 - #1^
3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])))]*(
-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*
#1^4 & , 3, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/(-Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] + Root[8
+ 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))))/Sqrt[8 + 8*x - x^3 + 8*x^4])/6264

________________________________________________________________________________________

Maple [C]  time = 0.019, size = 4426, normalized size = 10.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(8*x^4-x^3+8*x+8)^(3/2),x)

[Out]

-16*(-17/10962-57/12992*x+191/58464*x^2-7/3132*x^3)/(8*x^4-x^3+8*x+8)^(1/2)+421/12528*(RootOf(8*_Z^4-_Z^3+8*_Z
+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8
,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+
8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))^2*((RootOf(8*
_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8
*_Z^4-_Z^3+8*_Z+8,index=3)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)*(
(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))
/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)
))^(1/2)/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,in
dex=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*2^(1/2)/((x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z
^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)))^(1/2)*Ellip
ticF(((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,ind
ex=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,in
dex=2)))^(1/2),((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*(RootOf(8*_Z^4-_Z^3+8*
_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+
8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)))^(1/2))+7/6264*(RootOf(8*_
Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^
4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z
^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))^
2*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=
3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index
=2)))^(1/2)*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_
Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*
_Z+8,index=2)))^(1/2)/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))/(RootOf(8*_Z^4-_
Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*2^(1/2)/((x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-Roo
tOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))
)^(1/2)*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)*EllipticF(((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+
8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3
+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2),((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*
_Z^4-_Z^3+8*_Z+8,index=3))*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_
Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4
-_Z^3+8*_Z+8,index=4)))^(1/2))+(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*Ellipti
cPi(((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,inde
x=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,ind
ex=2)))^(1/2),(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*_Z
+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)),((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8
,index=3))*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,
index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,ind
ex=4)))^(1/2)))-7/783*((x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*(x-RootOf
(8*_Z^4-_Z^3+8*_Z+8,index=4))+(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))*((RootOf
(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootO
f(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2
)*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))^2*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,inde
x=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3)-RootOf(8*_Z^4-_Z^3+8*_Z+8,ind
ex=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8
*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+
8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)*RootOf(8*_
Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)*RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)+RootOf(8*_Z^4-_
Z^3+8*_Z+8,index=2)*RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)+RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)^2)/(RootOf(8*_Z^4-_Z
^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+
8*_Z+8,index=1))*EllipticF(((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(
8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf
(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2),((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*
(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-Ro
otOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)))^(1/
2))+(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*EllipticE(((RootOf(8*_Z^4-_Z^3+8*_
Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*
_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2),((RootOf(8*_Z^
4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_
Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8*_Z^4-_Z
^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)))^(1/2))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z
^4-_Z^3+8*_Z+8,index=1))-1/8/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*EllipticP
i(((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=
1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index
=2)))^(1/2),(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8
,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)),((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,i
ndex=3))*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,in
dex=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index
=4)))^(1/2))))*2^(1/2)/((x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))*(x-RootO
f(8*_Z^4-_Z^3+8*_Z+8,index=3))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (8 \, x^{4} - x^{3} + 8 \, x + 8\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(8*x^4-x^3+8*x+8)^(3/2),x, algorithm="maxima")

[Out]

integrate((8*x^4 - x^3 + 8*x + 8)^(-3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{8 \, x^{4} - x^{3} + 8 \, x + 8}}{64 \, x^{8} - 16 \, x^{7} + x^{6} + 128 \, x^{5} + 112 \, x^{4} - 16 \, x^{3} + 64 \, x^{2} + 128 \, x + 64}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(8*x^4-x^3+8*x+8)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(8*x^4 - x^3 + 8*x + 8)/(64*x^8 - 16*x^7 + x^6 + 128*x^5 + 112*x^4 - 16*x^3 + 64*x^2 + 128*x + 64
), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (8 x^{4} - x^{3} + 8 x + 8\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(8*x**4-x**3+8*x+8)**(3/2),x)

[Out]

Integral((8*x**4 - x**3 + 8*x + 8)**(-3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (8 \, x^{4} - x^{3} + 8 \, x + 8\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(8*x^4-x^3+8*x+8)^(3/2),x, algorithm="giac")

[Out]

integrate((8*x^4 - x^3 + 8*x + 8)^(-3/2), x)