3.794 \(\int \frac{x^2}{(a+8 x-8 x^2+4 x^3-x^4)^{3/2}} \, dx\)

Optimal. Leaf size=311 \[ \frac{(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{(x-1)^2+1}{(a+4) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}-\frac{\left (1-\sqrt{a+4}\right ) (x-1) \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right )}{2 (a+3) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{\left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{2 (a+3) \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

(1 + (-1 + x)^2)/((4 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + ((4 + a)*(2 + (-1 + x)^2)*(-1 + x))/(2*(1
2 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) - ((1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a])
)*(-1 + x))/(2*(3 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*(1
+ (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4
 + a])])/(2*(3 + a)*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2
*(-1 + x)^2 - (-1 + x)^4])

________________________________________________________________________________________

Rubi [A]  time = 0.327172, antiderivative size = 311, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.321, Rules used = {1680, 1673, 1178, 12, 1140, 492, 411, 1107, 613} \[ \frac{(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{(x-1)^2+1}{(a+4) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}-\frac{\left (1-\sqrt{a+4}\right ) (x-1) \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right )}{2 (a+3) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{\left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{2 (a+3) \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x]

[Out]

(1 + (-1 + x)^2)/((4 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + ((4 + a)*(2 + (-1 + x)^2)*(-1 + x))/(2*(1
2 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) - ((1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a])
)*(-1 + x))/(2*(3 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*(1
+ (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4
 + a])])/(2*(3 + a)*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2
*(-1 + x)^2 - (-1 + x)^4])

Rule 1680

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1140

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(Sqrt[1
+ (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[x^2/(Sqrt[1 + (2*c*x^2)/(b - q)
]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 613

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[(-2*(b + 2*c*x))/((b^2 - 4*a*c)*Sqrt[a + b*x
 + c*x^2]), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx &=\operatorname{Subst}\left (\int \frac{(1+x)^2}{\left (3+a-2 x^2-x^4\right )^{3/2}} \, dx,x,-1+x\right )\\ &=\operatorname{Subst}\left (\int \frac{2 x}{\left (3+a-2 x^2-x^4\right )^{3/2}} \, dx,x,-1+x\right )+\operatorname{Subst}\left (\int \frac{1+x^2}{\left (3+a-2 x^2-x^4\right )^{3/2}} \, dx,x,-1+x\right )\\ &=\frac{(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}+2 \operatorname{Subst}\left (\int \frac{x}{\left (3+a-2 x^2-x^4\right )^{3/2}} \, dx,x,-1+x\right )-\frac{\operatorname{Subst}\left (\int \frac{2 (4+a) x^2}{\sqrt{3+a-2 x^2-x^4}} \, dx,x,-1+x\right )}{4 \left (12+7 a+a^2\right )}\\ &=\frac{(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}-\frac{\operatorname{Subst}\left (\int \frac{x^2}{\sqrt{3+a-2 x^2-x^4}} \, dx,x,-1+x\right )}{2 (3+a)}+\operatorname{Subst}\left (\int \frac{1}{\left (3+a-2 x-x^2\right )^{3/2}} \, dx,x,(-1+x)^2\right )\\ &=\frac{1+(-1+x)^2}{(4+a) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}+\frac{(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}-\frac{\left (\sqrt{1-\frac{2 (-1+x)^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 (-1+x)^2}{-2+2 \sqrt{4+a}}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-\frac{2 x^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 x^2}{-2+2 \sqrt{4+a}}}} \, dx,x,-1+x\right )}{2 (3+a) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac{1+(-1+x)^2}{(4+a) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}+\frac{\left (1-\sqrt{4+a}\right ) \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) (1-x)}{2 (3+a) \sqrt{3+a-2 (1-x)^2-(1-x)^4}}+\frac{(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}+\frac{\left (\left (1-\sqrt{4+a}\right ) \sqrt{1-\frac{2 (-1+x)^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 (-1+x)^2}{-2+2 \sqrt{4+a}}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{2 x^2}{-2+2 \sqrt{4+a}}}}{\left (1-\frac{2 x^2}{-2-2 \sqrt{4+a}}\right )^{3/2}} \, dx,x,-1+x\right )}{2 (3+a) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac{1+(-1+x)^2}{(4+a) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}+\frac{\left (1-\sqrt{4+a}\right ) \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) (1-x)}{2 (3+a) \sqrt{3+a-2 (1-x)^2-(1-x)^4}}+\frac{(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}-\frac{\left (1-\sqrt{4+a}\right ) \sqrt{1+\sqrt{4+a}} \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) E\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{1+\sqrt{4+a}}}\right )|-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}\right )}{2 (3+a) \sqrt{\frac{1+\frac{(1-x)^2}{1-\sqrt{4+a}}}{1+\frac{(1-x)^2}{1+\sqrt{4+a}}}} \sqrt{3+a-2 (1-x)^2-(1-x)^4}}\\ \end{align*}

Mathematica [B]  time = 6.11133, size = 2941, normalized size = 9.46 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x]

[Out]

((-a - 8*x - a*x + 6*x^2 + a*x^2 - 4*x^3 - a*x^3)*(a + 8*x - 8*x^2 + 4*x^3 - x^4)^2)/(2*(3 + a)*(4 + a)*(-a -
8*x + 8*x^2 - 4*x^3 + x^4)*(a - x*(-8 + 8*x - 4*x^2 + x^3))^(3/2)) - ((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2)*((
2*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqr
t[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sq
rt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)
)/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[
4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 -
Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 -
Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((
-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1
 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqr
t[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) - (4*(-Sqrt[
-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]]
- Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
)*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1
 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1
 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]
] + x))]*((-1 - Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]
])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4
 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4
 + a]])^2] + 2*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 -
 Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 +
Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] -
x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2
]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x
^4]) + ((-1 + Sqrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x)
+ 2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqr
t[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sq
rt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))
/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4
 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - S
qrt[4 + a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*EllipticE[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[
4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt
[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 -
Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]) + ((-((-1 - Sqrt[-1 - Sqrt[4 + a]])*(-2
- Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])) + (-1 + Sqrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] -
Sqrt[-1 + Sqrt[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-
1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]],
 (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*
Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])) + (4*EllipticPi[(Sqrt[-1 - Sqrt[4 +
 a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqr
t[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sq
rt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1
- Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])))/Sqrt[a + 8*x
 - 8*x^2 + 4*x^3 - x^4]))/(2*(3 + a)*(a - x*(-8 + 8*x - 4*x^2 + x^3))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.022, size = 2607, normalized size = 8.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x)

[Out]

2*(1/4/(3+a)*x^3-1/4*(6+a)/(a^2+7*a+12)*x^2+1/4*(8+a)/(a^2+7*a+12)*x+1/4*a/(a^2+7*a+12))/(-x^4+4*x^3-8*x^2+a+8
*x)^(1/2)-(2/(a^2+7*a+12)-1/2*(8+a)/(a^2+7*a+12))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)
^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(
1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(
4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1
+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+
a)^(1/2))^(1/2)))^(1/2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+
a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)
*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(
1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1
/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+
a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))-(-2/(a^2+7*a+12)+(6+a)/(a^2+7*a+12))*((-1-(4+a)^(1/2))^(1/2)+(
-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4
+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-
2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1
+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(
-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-
1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*
(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*((1-(-1+(4+a)^(1/2))^(1/2))*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^
(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/
2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(
1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))
+2*(-1+(4+a)^(1/2))^(1/2)*EllipticPi(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(
1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),(-(-1-(4+a)^(1/2))^
(1/2)-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(
4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(
1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2)))-1/2/(3+a)*((x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1-(-
1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2))+((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a
)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^
(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-
(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-
1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4
+a)^(1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(4+a)^(1/2))^(1/2))*(1+(-1+(4+a)^(1/2))^(1/2))-(1-(-1-(4+a)^(1/2))^(1/2
))*(1+(-1+(4+a)^(1/2))^(1/2))+(1-(-1-(4+a)^(1/2))^(1/2))*(1-(-1+(4+a)^(1/2))^(1/2))+(1-(-1+(4+a)^(1/2))^(1/2))
^2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2
)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(
-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4
+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1
/2)))^(1/2))-1/2*(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*EllipticE(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a
)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(
1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))
^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2
))/(-1+(4+a)^(1/2))^(1/2)-4/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*EllipticPi(((-(-1-(4+a)^(1/2))^(1
/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1
+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4
+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(
1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))
))/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/
2))^(1/2)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x^{2}}{x^{8} - 8 \, x^{7} + 32 \, x^{6} - 2 \,{\left (a - 64\right )} x^{4} - 80 \, x^{5} + 8 \,{\left (a - 16\right )} x^{3} - 16 \,{\left (a - 4\right )} x^{2} + a^{2} + 16 \, a x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x^2/(x^8 - 8*x^7 + 32*x^6 - 2*(a - 64)*x^4 - 80*x^5 + 8*(a - 16)
*x^3 - 16*(a - 4)*x^2 + a^2 + 16*a*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-x**4+4*x**3-8*x**2+a+8*x)**(3/2),x)

[Out]

Integral(x**2/(a - x**4 + 4*x**3 - 8*x**2 + 8*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError