3.787 \(\int x \sqrt{a+8 x-8 x^2+4 x^3-x^4} \, dx\)

Optimal. Leaf size=466 \[ \frac{1}{4} \left ((x-1)^2+1\right ) \sqrt{a-(x-1)^4-2 (x-1)^2+3}+\frac{1}{3} (x-1) \sqrt{a-(x-1)^4-2 (x-1)^2+3}-\frac{2 \left (1-\sqrt{a+4}\right ) (x-1) \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right )}{3 \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{1}{4} (a+4) \tan ^{-1}\left (\frac{(x-1)^2+1}{\sqrt{a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac{2 (a+3) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{2 \left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

((1 + (-1 + x)^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])/4 - (2*(1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[
4 + a]))*(-1 + x))/(3*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]*(-1
+ x))/3 + ((4 + a)*ArcTan[(1 + (-1 + x)^2)/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]])/4 + (2*(1 - Sqrt[4 + a])*
Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2
*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a])
)]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (2*(3 + a)*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a
]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 +
x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

________________________________________________________________________________________

Rubi [A]  time = 0.454577, antiderivative size = 466, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 12, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.462, Rules used = {1680, 1673, 1091, 1202, 531, 418, 492, 411, 1107, 612, 621, 204} \[ \frac{1}{4} \left ((x-1)^2+1\right ) \sqrt{a-(x-1)^4-2 (x-1)^2+3}+\frac{1}{3} (x-1) \sqrt{a-(x-1)^4-2 (x-1)^2+3}-\frac{2 \left (1-\sqrt{a+4}\right ) (x-1) \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right )}{3 \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{1}{4} (a+4) \tan ^{-1}\left (\frac{(x-1)^2+1}{\sqrt{a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac{2 (a+3) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{2 \left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

((1 + (-1 + x)^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])/4 - (2*(1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[
4 + a]))*(-1 + x))/(3*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]*(-1
+ x))/3 + ((4 + a)*ArcTan[(1 + (-1 + x)^2)/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]])/4 + (2*(1 - Sqrt[4 + a])*
Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2
*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a])
)]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (2*(3 + a)*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a
]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 +
x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

Rule 1680

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1091

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a + b*x^2 + c*x^4)^p)/(4*p + 1), x] + Dis
t[(2*p)/(4*p + 1), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1202

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[(d + e*x^2)/(Sqr
t[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int x \sqrt{a+8 x-8 x^2+4 x^3-x^4} \, dx &=\operatorname{Subst}\left (\int (1+x) \sqrt{3+a-2 x^2-x^4} \, dx,x,-1+x\right )\\ &=\operatorname{Subst}\left (\int \sqrt{3+a-2 x^2-x^4} \, dx,x,-1+x\right )+\operatorname{Subst}\left (\int x \sqrt{3+a-2 x^2-x^4} \, dx,x,-1+x\right )\\ &=\frac{1}{3} \sqrt{3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac{1}{3} \operatorname{Subst}\left (\int \frac{2 (3+a)-2 x^2}{\sqrt{3+a-2 x^2-x^4}} \, dx,x,-1+x\right )+\frac{1}{2} \operatorname{Subst}\left (\int \sqrt{3+a-2 x-x^2} \, dx,x,(-1+x)^2\right )\\ &=\frac{1}{4} \sqrt{3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac{1}{3} \sqrt{3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac{1}{4} (4+a) \operatorname{Subst}\left (\int \frac{1}{\sqrt{3+a-2 x-x^2}} \, dx,x,(-1+x)^2\right )+\frac{\left (\sqrt{1-\frac{2 (-1+x)^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 (-1+x)^2}{-2+2 \sqrt{4+a}}}\right ) \operatorname{Subst}\left (\int \frac{2 (3+a)-2 x^2}{\sqrt{1-\frac{2 x^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 x^2}{-2+2 \sqrt{4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac{1}{4} \sqrt{3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac{1}{3} \sqrt{3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac{1}{2} (4+a) \operatorname{Subst}\left (\int \frac{1}{-4-x^2} \, dx,x,-\frac{2 \left (1+(-1+x)^2\right )}{\sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}\right )-\frac{\left (2 \sqrt{1-\frac{2 (-1+x)^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 (-1+x)^2}{-2+2 \sqrt{4+a}}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-\frac{2 x^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 x^2}{-2+2 \sqrt{4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}+\frac{\left (2 (3+a) \sqrt{1-\frac{2 (-1+x)^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 (-1+x)^2}{-2+2 \sqrt{4+a}}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{2 x^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 x^2}{-2+2 \sqrt{4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac{1}{4} \sqrt{3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac{2 \left (1-\sqrt{4+a}\right ) \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) (1-x)}{3 \sqrt{3+a-2 (1-x)^2-(1-x)^4}}+\frac{1}{3} \sqrt{3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac{1}{4} (4+a) \tan ^{-1}\left (\frac{1+(-1+x)^2}{\sqrt{3+a-2 (1-x)^2-(1-x)^4}}\right )-\frac{2 (3+a) \sqrt{1+\sqrt{4+a}} \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) F\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{1+\sqrt{4+a}}}\right )|-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}\right )}{3 \sqrt{\frac{1+\frac{(1-x)^2}{1-\sqrt{4+a}}}{1+\frac{(1-x)^2}{1+\sqrt{4+a}}}} \sqrt{3+a-2 (1-x)^2-(1-x)^4}}+\frac{\left (2 \left (1-\sqrt{4+a}\right ) \sqrt{1-\frac{2 (-1+x)^2}{-2-2 \sqrt{4+a}}} \sqrt{1-\frac{2 (-1+x)^2}{-2+2 \sqrt{4+a}}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{2 x^2}{-2+2 \sqrt{4+a}}}}{\left (1-\frac{2 x^2}{-2-2 \sqrt{4+a}}\right )^{3/2}} \, dx,x,-1+x\right )}{3 \sqrt{3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac{1}{4} \sqrt{3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac{2 \left (1-\sqrt{4+a}\right ) \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) (1-x)}{3 \sqrt{3+a-2 (1-x)^2-(1-x)^4}}+\frac{1}{3} \sqrt{3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac{1}{4} (4+a) \tan ^{-1}\left (\frac{1+(-1+x)^2}{\sqrt{3+a-2 (1-x)^2-(1-x)^4}}\right )-\frac{2 \left (1-\sqrt{4+a}\right ) \sqrt{1+\sqrt{4+a}} \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) E\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{1+\sqrt{4+a}}}\right )|-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}\right )}{3 \sqrt{\frac{1+\frac{(1-x)^2}{1-\sqrt{4+a}}}{1+\frac{(1-x)^2}{1+\sqrt{4+a}}}} \sqrt{3+a-2 (1-x)^2-(1-x)^4}}-\frac{2 (3+a) \sqrt{1+\sqrt{4+a}} \left (1+\frac{(1-x)^2}{1-\sqrt{4+a}}\right ) F\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{1+\sqrt{4+a}}}\right )|-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}\right )}{3 \sqrt{\frac{1+\frac{(1-x)^2}{1-\sqrt{4+a}}}{1+\frac{(1-x)^2}{1+\sqrt{4+a}}}} \sqrt{3+a-2 (1-x)^2-(1-x)^4}}\\ \end{align*}

Mathematica [B]  time = 6.08799, size = 4389, normalized size = 9.42 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

(1/6 - x/6 + x^2/4)*Sqrt[a - x*(-8 + 8*x - 4*x^2 + x^3)] + (Sqrt[a - x*(-8 + 8*x - 4*x^2 + x^3)]*((-8*(-Sqrt[-
1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
)*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-
1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-
1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a
]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a
]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 -
 Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4
+ a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*
(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (2*a*(-Sqrt[-1 - Sqr
t[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[
-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 -
 Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqr
t[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqr
t[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)
)]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x)
)/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4
 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] -
 Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[
-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (40*(-Sqrt[-1 - Sqrt[4 + a]
] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt
[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 -
 Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqr
t[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*((-1 -
Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1
 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]],
(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2] + 2*S
qrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4
 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1
- Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2]))/(Sqrt[-1 - S
qrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (6*a*(-Sq
rt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a
]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt
[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*
(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 +
 a]] + x))]*((-1 - Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 +
 a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqr
t[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqr
t[4 + a]])^2] + 2*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-
1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1
 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]]
 - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]]
)^2]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3
- x^4]) - (4*((-1 + Sqrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + Sqrt[-1 + Sqrt[4 + a]]
 + x) + 2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1
 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-
1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]]
 + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 -
Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[
-1 - Sqrt[4 + a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*EllipticE[ArcSin[Sqrt[((Sqrt[-1 -
 Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1
+ Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt
[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]) + ((-((-1 - Sqrt[-1 - Sqrt[4 + a]]
)*(-2 - Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])) + (-1 + Sqrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 +
a]] - Sqrt[-1 + Sqrt[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 +
Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] -
x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2
])/(2*Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])) + (4*EllipticPi[(Sqrt[-1 - Sq
rt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1
 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-
1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sq
rt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))))/Sqrt[
a + 8*x - 8*x^2 + 4*x^3 - x^4]))/(6*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4])

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 2551, normalized size = 5.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x)

[Out]

1/4*x^2*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-1/6*x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)+1/6*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)
-(1/6*a-2/3)*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))
*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(
1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^
(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1
/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-(-1-(4+a)^(
1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2)
)^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+
(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1
+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a
)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2
)))^(1/2))-(1/2*a+10/3)*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1
/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2)
)^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4
+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(
-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-
(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+
(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*((1-(-1+(4+a)^(1/2))^(1/2
))*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))
^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^
(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(
4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))+2*(-1+(4+a)^(1/2))^(1/2)*EllipticPi(((-(-1-(4+a)^(1/2))^(1/2
)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(
-1+(4+a)^(1/2))^(1/2)))^(1/2),(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4
+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(
1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))
)-2/3*((x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2))+((-1-(4+a)^(1/2)
)^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))
/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1
/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))
/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2)
)^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(4+a)^(1/2))^(1/2))*(1+(-1+(
4+a)^(1/2))^(1/2))-(1-(-1-(4+a)^(1/2))^(1/2))*(1+(-1+(4+a)^(1/2))^(1/2))+(1-(-1-(4+a)^(1/2))^(1/2))*(1-(-1+(4+
a)^(1/2))^(1/2))+(1-(-1+(4+a)^(1/2))^(1/2))^2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2
))^(1/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^
(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(
1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/
((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))-1/2*(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*E
llipticE(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/
2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2
))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)
^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))/(-1+(4+a)^(1/2))^(1/2)-4/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2
))^(1/2))*EllipticPi(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a
)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(
1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))
*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(
1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))))/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1
-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \sqrt{a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)

[Out]

Integral(x*sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)