3.756 \(\int \frac{1}{x+\sqrt{-3-2 x+x^2}} \, dx\)

Optimal. Leaf size=65 \[ -\frac{2}{-\sqrt{x^2-2 x-3}-x+1}+2 \log \left (-\sqrt{x^2-2 x-3}-x+1\right )-\frac{3}{2} \log \left (\sqrt{x^2-2 x-3}+x\right ) \]

[Out]

-2/(1 - x - Sqrt[-3 - 2*x + x^2]) + 2*Log[1 - x - Sqrt[-3 - 2*x + x^2]] - (3*Log[x + Sqrt[-3 - 2*x + x^2]])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0300388, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {2116, 893} \[ -\frac{2}{-\sqrt{x^2-2 x-3}-x+1}+2 \log \left (-\sqrt{x^2-2 x-3}-x+1\right )-\frac{3}{2} \log \left (\sqrt{x^2-2 x-3}+x\right ) \]

Antiderivative was successfully verified.

[In]

Int[(x + Sqrt[-3 - 2*x + x^2])^(-1),x]

[Out]

-2/(1 - x - Sqrt[-3 - 2*x + x^2]) + 2*Log[1 - x - Sqrt[-3 - 2*x + x^2]] - (3*Log[x + Sqrt[-3 - 2*x + x^2]])/2

Rule 2116

Int[((g_.) + (h_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2])^(n_))^(p_.), x_Symbol]
 :> Dist[2, Subst[Int[((g + h*x^n)^p*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x + e*x^2))/(-2*d*e + b*f^2 +
2*e*x)^2, x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && EqQ[e^2 -
c*f^2, 0] && IntegerQ[p]

Rule 893

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && I
ntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rubi steps

\begin{align*} \int \frac{1}{x+\sqrt{-3-2 x+x^2}} \, dx &=2 \operatorname{Subst}\left (\int \frac{-3-2 x+x^2}{x (-2+2 x)^2} \, dx,x,x+\sqrt{-3-2 x+x^2}\right )\\ &=2 \operatorname{Subst}\left (\int \left (-\frac{1}{(-1+x)^2}+\frac{1}{-1+x}-\frac{3}{4 x}\right ) \, dx,x,x+\sqrt{-3-2 x+x^2}\right )\\ &=-\frac{2}{1-x-\sqrt{-3-2 x+x^2}}+2 \log \left (1-x-\sqrt{-3-2 x+x^2}\right )-\frac{3}{2} \log \left (x+\sqrt{-3-2 x+x^2}\right )\\ \end{align*}

Mathematica [A]  time = 0.0266081, size = 59, normalized size = 0.91 \[ 2 \left (\frac{1}{\sqrt{x^2-2 x-3}+x-1}+\log \left (-\sqrt{x^2-2 x-3}-x+1\right )-\frac{3}{4} \log \left (\sqrt{x^2-2 x-3}+x\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(x + Sqrt[-3 - 2*x + x^2])^(-1),x]

[Out]

2*((-1 + x + Sqrt[-3 - 2*x + x^2])^(-1) + Log[1 - x - Sqrt[-3 - 2*x + x^2]] - (3*Log[x + Sqrt[-3 - 2*x + x^2]]
)/4)

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 71, normalized size = 1.1 \begin{align*} -{\frac{1}{4}\sqrt{4\, \left ( x+3/2 \right ) ^{2}-20\,x-21}}+{\frac{5}{4}\ln \left ( -1+x+\sqrt{ \left ( x+{\frac{3}{2}} \right ) ^{2}-5\,x-{\frac{21}{4}}} \right ) }+{\frac{3}{4}{\it Artanh} \left ({\frac{-6-10\,x}{3}{\frac{1}{\sqrt{4\, \left ( x+3/2 \right ) ^{2}-20\,x-21}}}} \right ) }+{\frac{x}{2}}-{\frac{3\,\ln \left ( 3+2\,x \right ) }{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x+(x^2-2*x-3)^(1/2)),x)

[Out]

-1/4*(4*(x+3/2)^2-20*x-21)^(1/2)+5/4*ln(-1+x+((x+3/2)^2-5*x-21/4)^(1/2))+3/4*arctanh(2/3*(-3-5*x)/(4*(x+3/2)^2
-20*x-21)^(1/2))+1/2*x-3/4*ln(3+2*x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x + \sqrt{x^{2} - 2 \, x - 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+(x^2-2*x-3)^(1/2)),x, algorithm="maxima")

[Out]

integrate(1/(x + sqrt(x^2 - 2*x - 3)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.77213, size = 227, normalized size = 3.49 \begin{align*} \frac{1}{2} \, x - \frac{1}{2} \, \sqrt{x^{2} - 2 \, x - 3} - \frac{3}{4} \, \log \left (2 \, x + 3\right ) - \frac{5}{4} \, \log \left (-x + \sqrt{x^{2} - 2 \, x - 3} + 1\right ) + \frac{3}{4} \, \log \left (-x + \sqrt{x^{2} - 2 \, x - 3}\right ) - \frac{3}{4} \, \log \left (-x + \sqrt{x^{2} - 2 \, x - 3} - 3\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+(x^2-2*x-3)^(1/2)),x, algorithm="fricas")

[Out]

1/2*x - 1/2*sqrt(x^2 - 2*x - 3) - 3/4*log(2*x + 3) - 5/4*log(-x + sqrt(x^2 - 2*x - 3) + 1) + 3/4*log(-x + sqrt
(x^2 - 2*x - 3)) - 3/4*log(-x + sqrt(x^2 - 2*x - 3) - 3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x + \sqrt{x^{2} - 2 x - 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+(x**2-2*x-3)**(1/2)),x)

[Out]

Integral(1/(x + sqrt(x**2 - 2*x - 3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.17132, size = 109, normalized size = 1.68 \begin{align*} \frac{1}{2} \, x - \frac{1}{2} \, \sqrt{x^{2} - 2 \, x - 3} - \frac{3}{4} \, \log \left ({\left | 2 \, x + 3 \right |}\right ) - \frac{5}{4} \, \log \left ({\left | -x + \sqrt{x^{2} - 2 \, x - 3} + 1 \right |}\right ) + \frac{3}{4} \, \log \left ({\left | -x + \sqrt{x^{2} - 2 \, x - 3} \right |}\right ) - \frac{3}{4} \, \log \left ({\left | -x + \sqrt{x^{2} - 2 \, x - 3} - 3 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+(x^2-2*x-3)^(1/2)),x, algorithm="giac")

[Out]

1/2*x - 1/2*sqrt(x^2 - 2*x - 3) - 3/4*log(abs(2*x + 3)) - 5/4*log(abs(-x + sqrt(x^2 - 2*x - 3) + 1)) + 3/4*log
(abs(-x + sqrt(x^2 - 2*x - 3))) - 3/4*log(abs(-x + sqrt(x^2 - 2*x - 3) - 3))