3.689 \(\int (\frac{x}{(a+b x^2)^{5/2}}+\frac{x}{(a+b x^2)^{3/2}}+\frac{x}{(1+x^2) \sqrt{a+b x^2}}) \, dx\)

Optimal. Leaf size=68 \[ -\frac{1}{b \sqrt{a+b x^2}}-\frac{1}{3 b \left (a+b x^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a-b}}\right )}{\sqrt{a-b}} \]

[Out]

-1/(3*b*(a + b*x^2)^(3/2)) - 1/(b*Sqrt[a + b*x^2]) - ArcTanh[Sqrt[a + b*x^2]/Sqrt[a - b]]/Sqrt[a - b]

________________________________________________________________________________________

Rubi [A]  time = 0.0417059, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 47, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.085, Rules used = {261, 444, 63, 208} \[ -\frac{1}{b \sqrt{a+b x^2}}-\frac{1}{3 b \left (a+b x^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a-b}}\right )}{\sqrt{a-b}} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b*x^2)^(5/2) + x/(a + b*x^2)^(3/2) + x/((1 + x^2)*Sqrt[a + b*x^2]),x]

[Out]

-1/(3*b*(a + b*x^2)^(3/2)) - 1/(b*Sqrt[a + b*x^2]) - ArcTanh[Sqrt[a + b*x^2]/Sqrt[a - b]]/Sqrt[a - b]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \left (\frac{x}{\left (a+b x^2\right )^{5/2}}+\frac{x}{\left (a+b x^2\right )^{3/2}}+\frac{x}{\left (1+x^2\right ) \sqrt{a+b x^2}}\right ) \, dx &=\int \frac{x}{\left (a+b x^2\right )^{5/2}} \, dx+\int \frac{x}{\left (a+b x^2\right )^{3/2}} \, dx+\int \frac{x}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx\\ &=-\frac{1}{3 b \left (a+b x^2\right )^{3/2}}-\frac{1}{b \sqrt{a+b x^2}}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,x^2\right )\\ &=-\frac{1}{3 b \left (a+b x^2\right )^{3/2}}-\frac{1}{b \sqrt{a+b x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x^2}\right )}{b}\\ &=-\frac{1}{3 b \left (a+b x^2\right )^{3/2}}-\frac{1}{b \sqrt{a+b x^2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a-b}}\right )}{\sqrt{a-b}}\\ \end{align*}

Mathematica [A]  time = 0.190112, size = 63, normalized size = 0.93 \[ \frac{-3 a-3 b x^2-1}{3 b \left (a+b x^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a-b}}\right )}{\sqrt{a-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*x^2)^(5/2) + x/(a + b*x^2)^(3/2) + x/((1 + x^2)*Sqrt[a + b*x^2]),x]

[Out]

(-1 - 3*a - 3*b*x^2)/(3*b*(a + b*x^2)^(3/2)) - ArcTanh[Sqrt[a + b*x^2]/Sqrt[a - b]]/Sqrt[a - b]

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 56, normalized size = 0.8 \begin{align*} -{\frac{1}{3\,b} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}}-{\frac{1}{b}{\frac{1}{\sqrt{b{x}^{2}+a}}}}+{\arctan \left ({\sqrt{b{x}^{2}+a}{\frac{1}{\sqrt{b-a}}}} \right ){\frac{1}{\sqrt{b-a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^2+a)^(5/2)+x/(b*x^2+a)^(3/2)+x/(x^2+1)/(b*x^2+a)^(1/2),x)

[Out]

-1/3/b/(b*x^2+a)^(3/2)-1/b/(b*x^2+a)^(1/2)+1/(b-a)^(1/2)*arctan((b*x^2+a)^(1/2)/(b-a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(5/2)+x/(b*x^2+a)^(3/2)+x/(x^2+1)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.64651, size = 799, normalized size = 11.75 \begin{align*} \left [\frac{3 \,{\left (b^{3} x^{4} + 2 \, a b^{2} x^{2} + a^{2} b\right )} \sqrt{a - b} \log \left (\frac{b^{2} x^{4} + 2 \,{\left (4 \, a b - 3 \, b^{2}\right )} x^{2} - 4 \,{\left (b x^{2} + 2 \, a - b\right )} \sqrt{b x^{2} + a} \sqrt{a - b} + 8 \, a^{2} - 8 \, a b + b^{2}}{x^{4} + 2 \, x^{2} + 1}\right ) - 4 \,{\left (3 \,{\left (a b - b^{2}\right )} x^{2} + 3 \, a^{2} -{\left (3 \, a + 1\right )} b + a\right )} \sqrt{b x^{2} + a}}{12 \,{\left ({\left (a b^{3} - b^{4}\right )} x^{4} + a^{3} b - a^{2} b^{2} + 2 \,{\left (a^{2} b^{2} - a b^{3}\right )} x^{2}\right )}}, -\frac{3 \,{\left (b^{3} x^{4} + 2 \, a b^{2} x^{2} + a^{2} b\right )} \sqrt{-a + b} \arctan \left (-\frac{{\left (b x^{2} + 2 \, a - b\right )} \sqrt{b x^{2} + a} \sqrt{-a + b}}{2 \,{\left ({\left (a b - b^{2}\right )} x^{2} + a^{2} - a b\right )}}\right ) + 2 \,{\left (3 \,{\left (a b - b^{2}\right )} x^{2} + 3 \, a^{2} -{\left (3 \, a + 1\right )} b + a\right )} \sqrt{b x^{2} + a}}{6 \,{\left ({\left (a b^{3} - b^{4}\right )} x^{4} + a^{3} b - a^{2} b^{2} + 2 \,{\left (a^{2} b^{2} - a b^{3}\right )} x^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(5/2)+x/(b*x^2+a)^(3/2)+x/(x^2+1)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(3*(b^3*x^4 + 2*a*b^2*x^2 + a^2*b)*sqrt(a - b)*log((b^2*x^4 + 2*(4*a*b - 3*b^2)*x^2 - 4*(b*x^2 + 2*a - b
)*sqrt(b*x^2 + a)*sqrt(a - b) + 8*a^2 - 8*a*b + b^2)/(x^4 + 2*x^2 + 1)) - 4*(3*(a*b - b^2)*x^2 + 3*a^2 - (3*a
+ 1)*b + a)*sqrt(b*x^2 + a))/((a*b^3 - b^4)*x^4 + a^3*b - a^2*b^2 + 2*(a^2*b^2 - a*b^3)*x^2), -1/6*(3*(b^3*x^4
 + 2*a*b^2*x^2 + a^2*b)*sqrt(-a + b)*arctan(-1/2*(b*x^2 + 2*a - b)*sqrt(b*x^2 + a)*sqrt(-a + b)/((a*b - b^2)*x
^2 + a^2 - a*b)) + 2*(3*(a*b - b^2)*x^2 + 3*a^2 - (3*a + 1)*b + a)*sqrt(b*x^2 + a))/((a*b^3 - b^4)*x^4 + a^3*b
 - a^2*b^2 + 2*(a^2*b^2 - a*b^3)*x^2)]

________________________________________________________________________________________

Sympy [A]  time = 3.15144, size = 97, normalized size = 1.43 \begin{align*} \begin{cases} - \frac{1}{b \sqrt{a + b x^{2}}} & \text{for}\: b \neq 0 \\\frac{x^{2}}{2 a^{\frac{3}{2}}} & \text{otherwise} \end{cases} + \begin{cases} - \frac{1}{3 a b \sqrt{a + b x^{2}} + 3 b^{2} x^{2} \sqrt{a + b x^{2}}} & \text{for}\: b \neq 0 \\\frac{x^{2}}{2 a^{\frac{5}{2}}} & \text{otherwise} \end{cases} + \frac{\operatorname{atan}{\left (\frac{\sqrt{a + b x^{2}}}{\sqrt{- a + b}} \right )}}{\sqrt{- a + b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**2+a)**(5/2)+x/(b*x**2+a)**(3/2)+x/(x**2+1)/(b*x**2+a)**(1/2),x)

[Out]

Piecewise((-1/(b*sqrt(a + b*x**2)), Ne(b, 0)), (x**2/(2*a**(3/2)), True)) + Piecewise((-1/(3*a*b*sqrt(a + b*x*
*2) + 3*b**2*x**2*sqrt(a + b*x**2)), Ne(b, 0)), (x**2/(2*a**(5/2)), True)) + atan(sqrt(a + b*x**2)/sqrt(-a + b
))/sqrt(-a + b)

________________________________________________________________________________________

Giac [A]  time = 1.16293, size = 74, normalized size = 1.09 \begin{align*} \frac{\arctan \left (\frac{\sqrt{b x^{2} + a}}{\sqrt{-a + b}}\right )}{\sqrt{-a + b}} - \frac{1}{\sqrt{b x^{2} + a} b} - \frac{1}{3 \,{\left (b x^{2} + a\right )}^{\frac{3}{2}} b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(5/2)+x/(b*x^2+a)^(3/2)+x/(x^2+1)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(b*x^2 + a)/sqrt(-a + b))/sqrt(-a + b) - 1/(sqrt(b*x^2 + a)*b) - 1/3/((b*x^2 + a)^(3/2)*b)