3.652 \(\int \frac{1}{x^3 \sqrt{a+b \sqrt{c+d x}}} \, dx\)

Optimal. Leaf size=261 \[ -\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 x^2 \left (a^2-b^2 c\right )}-\frac{b d \sqrt{a+b \sqrt{c+d x}} \left (6 a b c-\left (a^2+5 b^2 c\right ) \sqrt{c+d x}\right )}{8 c x \left (a^2-b^2 c\right )^2}+\frac{b d^2 \left (2 a-5 b \sqrt{c}\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a-b \sqrt{c}}}\right )}{16 c^{3/2} \left (a-b \sqrt{c}\right )^{5/2}}-\frac{b d^2 \left (2 a+5 b \sqrt{c}\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a+b \sqrt{c}}}\right )}{16 c^{3/2} \left (a+b \sqrt{c}\right )^{5/2}} \]

[Out]

-((a - b*Sqrt[c + d*x])*Sqrt[a + b*Sqrt[c + d*x]])/(2*(a^2 - b^2*c)*x^2) - (b*d*Sqrt[a + b*Sqrt[c + d*x]]*(6*a
*b*c - (a^2 + 5*b^2*c)*Sqrt[c + d*x]))/(8*c*(a^2 - b^2*c)^2*x) + (b*(2*a - 5*b*Sqrt[c])*d^2*ArcTanh[Sqrt[a + b
*Sqrt[c + d*x]]/Sqrt[a - b*Sqrt[c]]])/(16*(a - b*Sqrt[c])^(5/2)*c^(3/2)) - (b*(2*a + 5*b*Sqrt[c])*d^2*ArcTanh[
Sqrt[a + b*Sqrt[c + d*x]]/Sqrt[a + b*Sqrt[c]]])/(16*(a + b*Sqrt[c])^(5/2)*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.481436, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {371, 1398, 823, 827, 1166, 207} \[ -\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 x^2 \left (a^2-b^2 c\right )}-\frac{b d \sqrt{a+b \sqrt{c+d x}} \left (6 a b c-\left (a^2+5 b^2 c\right ) \sqrt{c+d x}\right )}{8 c x \left (a^2-b^2 c\right )^2}+\frac{b d^2 \left (2 a-5 b \sqrt{c}\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a-b \sqrt{c}}}\right )}{16 c^{3/2} \left (a-b \sqrt{c}\right )^{5/2}}-\frac{b d^2 \left (2 a+5 b \sqrt{c}\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a+b \sqrt{c}}}\right )}{16 c^{3/2} \left (a+b \sqrt{c}\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Sqrt[a + b*Sqrt[c + d*x]]),x]

[Out]

-((a - b*Sqrt[c + d*x])*Sqrt[a + b*Sqrt[c + d*x]])/(2*(a^2 - b^2*c)*x^2) - (b*d*Sqrt[a + b*Sqrt[c + d*x]]*(6*a
*b*c - (a^2 + 5*b^2*c)*Sqrt[c + d*x]))/(8*c*(a^2 - b^2*c)^2*x) + (b*(2*a - 5*b*Sqrt[c])*d^2*ArcTanh[Sqrt[a + b
*Sqrt[c + d*x]]/Sqrt[a - b*Sqrt[c]]])/(16*(a - b*Sqrt[c])^(5/2)*c^(3/2)) - (b*(2*a + 5*b*Sqrt[c])*d^2*ArcTanh[
Sqrt[a + b*Sqrt[c + d*x]]/Sqrt[a + b*Sqrt[c]]])/(16*(a + b*Sqrt[c])^(5/2)*c^(3/2))

Rule 371

Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coefficient[v, x, 0], d = Coefficient[v,
 x, 1]}, Dist[1/d^(m + 1), Subst[Int[SimplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0]
] /; FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]

Rule 1398

Int[((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g = Denominator[n]}, D
ist[g, Subst[Int[x^(g - 1)*(d + e*x^(g*n))^q*(a + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, c, d, e, p
, q}, x] && EqQ[n2, 2*n] && FractionQ[n]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^3 \sqrt{a+b \sqrt{c+d x}}} \, dx &=d^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b \sqrt{x}} (-c+x)^3} \, dx,x,c+d x\right )\\ &=\left (2 d^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{a+b x} \left (-c+x^2\right )^3} \, dx,x,\sqrt{c+d x}\right )\\ &=-\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 \left (a^2-b^2 c\right ) x^2}+\frac{d^2 \operatorname{Subst}\left (\int \frac{-\frac{1}{2} a b c+\frac{5}{2} b^2 c x}{\sqrt{a+b x} \left (-c+x^2\right )^2} \, dx,x,\sqrt{c+d x}\right )}{2 c \left (a^2-b^2 c\right )}\\ &=-\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 \left (a^2-b^2 c\right ) x^2}-\frac{b d \sqrt{a+b \sqrt{c+d x}} \left (6 a b c-\left (a^2+5 b^2 c\right ) \sqrt{c+d x}\right )}{8 c \left (a^2-b^2 c\right )^2 x}+\frac{d^2 \operatorname{Subst}\left (\int \frac{\frac{1}{2} a b c \left (a^2-4 b^2 c\right )+\frac{1}{4} b^2 c \left (a^2+5 b^2 c\right ) x}{\sqrt{a+b x} \left (-c+x^2\right )} \, dx,x,\sqrt{c+d x}\right )}{4 c^2 \left (a^2-b^2 c\right )^2}\\ &=-\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 \left (a^2-b^2 c\right ) x^2}-\frac{b d \sqrt{a+b \sqrt{c+d x}} \left (6 a b c-\left (a^2+5 b^2 c\right ) \sqrt{c+d x}\right )}{8 c \left (a^2-b^2 c\right )^2 x}+\frac{d^2 \operatorname{Subst}\left (\int \frac{\frac{1}{2} a b^2 c \left (a^2-4 b^2 c\right )-\frac{1}{4} a b^2 c \left (a^2+5 b^2 c\right )+\frac{1}{4} b^2 c \left (a^2+5 b^2 c\right ) x^2}{a^2-b^2 c-2 a x^2+x^4} \, dx,x,\sqrt{a+b \sqrt{c+d x}}\right )}{2 c^2 \left (a^2-b^2 c\right )^2}\\ &=-\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 \left (a^2-b^2 c\right ) x^2}-\frac{b d \sqrt{a+b \sqrt{c+d x}} \left (6 a b c-\left (a^2+5 b^2 c\right ) \sqrt{c+d x}\right )}{8 c \left (a^2-b^2 c\right )^2 x}-\frac{\left (b \left (2 a-5 b \sqrt{c}\right ) d^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a+b \sqrt{c}+x^2} \, dx,x,\sqrt{a+b \sqrt{c+d x}}\right )}{16 \left (a-b \sqrt{c}\right )^2 c^{3/2}}+\frac{\left (b \left (2 a+5 b \sqrt{c}\right ) d^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a-b \sqrt{c}+x^2} \, dx,x,\sqrt{a+b \sqrt{c+d x}}\right )}{16 \left (a+b \sqrt{c}\right )^2 c^{3/2}}\\ &=-\frac{\left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{2 \left (a^2-b^2 c\right ) x^2}-\frac{b d \sqrt{a+b \sqrt{c+d x}} \left (6 a b c-\left (a^2+5 b^2 c\right ) \sqrt{c+d x}\right )}{8 c \left (a^2-b^2 c\right )^2 x}+\frac{b \left (2 a-5 b \sqrt{c}\right ) d^2 \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a-b \sqrt{c}}}\right )}{16 \left (a-b \sqrt{c}\right )^{5/2} c^{3/2}}-\frac{b \left (2 a+5 b \sqrt{c}\right ) d^2 \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a+b \sqrt{c}}}\right )}{16 \left (a+b \sqrt{c}\right )^{5/2} c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.69639, size = 281, normalized size = 1.08 \[ -\frac{\frac{8 \left (a^2-b^2 c\right ) \left (a-b \sqrt{c+d x}\right ) \sqrt{a+b \sqrt{c+d x}}}{x^2}-\frac{2 b d \sqrt{a+b \sqrt{c+d x}} \left (a^2 \sqrt{c+d x}-6 a b c+5 b^2 c \sqrt{c+d x}\right )}{c x}+\frac{b d^2 \left (\left (a-b \sqrt{c}\right )^{5/2} \left (2 a+5 b \sqrt{c}\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a+b \sqrt{c}}}\right )-\left (2 a-5 b \sqrt{c}\right ) \left (a+b \sqrt{c}\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sqrt{c+d x}}}{\sqrt{a-b \sqrt{c}}}\right )\right )}{c^{3/2} \sqrt{a-b \sqrt{c}} \sqrt{a+b \sqrt{c}}}}{16 \left (a^2-b^2 c\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Sqrt[a + b*Sqrt[c + d*x]]),x]

[Out]

-((8*(a^2 - b^2*c)*(a - b*Sqrt[c + d*x])*Sqrt[a + b*Sqrt[c + d*x]])/x^2 - (2*b*d*Sqrt[a + b*Sqrt[c + d*x]]*(-6
*a*b*c + a^2*Sqrt[c + d*x] + 5*b^2*c*Sqrt[c + d*x]))/(c*x) + (b*d^2*(-((2*a - 5*b*Sqrt[c])*(a + b*Sqrt[c])^(5/
2)*ArcTanh[Sqrt[a + b*Sqrt[c + d*x]]/Sqrt[a - b*Sqrt[c]]]) + (a - b*Sqrt[c])^(5/2)*(2*a + 5*b*Sqrt[c])*ArcTanh
[Sqrt[a + b*Sqrt[c + d*x]]/Sqrt[a + b*Sqrt[c]]]))/(Sqrt[a - b*Sqrt[c]]*Sqrt[a + b*Sqrt[c]]*c^(3/2)))/(16*(a^2
- b^2*c)^2)

________________________________________________________________________________________

Maple [B]  time = 0.069, size = 840, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(a+b*(d*x+c)^(1/2))^(1/2),x)

[Out]

5/16*b^2*d^2/c/(b*(d*x+c)^(1/2)-(b^2*c)^(1/2))^2/(b^2*c+2*a*(b^2*c)^(1/2)+a^2)*(a+b*(d*x+c)^(1/2))^(3/2)+1/8*b
^2*d^2/c/(b^2*c)^(1/2)/(b*(d*x+c)^(1/2)-(b^2*c)^(1/2))^2/(b^2*c+2*a*(b^2*c)^(1/2)+a^2)*(a+b*(d*x+c)^(1/2))^(3/
2)*a-7/16*b^2*d^2/c/(b*(d*x+c)^(1/2)-(b^2*c)^(1/2))^2/((b^2*c)^(1/2)+a)*(a+b*(d*x+c)^(1/2))^(1/2)-1/8*b^2*d^2/
c/(b^2*c)^(1/2)/(b*(d*x+c)^(1/2)-(b^2*c)^(1/2))^2/((b^2*c)^(1/2)+a)*(a+b*(d*x+c)^(1/2))^(1/2)*a+5/16*b^2*d^2/c
/(b^2*c+2*a*(b^2*c)^(1/2)+a^2)/(-(b^2*c)^(1/2)-a)^(1/2)*arctan((a+b*(d*x+c)^(1/2))^(1/2)/(-(b^2*c)^(1/2)-a)^(1
/2))+1/8*b^2*d^2/c/(b^2*c)^(1/2)/(b^2*c+2*a*(b^2*c)^(1/2)+a^2)/(-(b^2*c)^(1/2)-a)^(1/2)*arctan((a+b*(d*x+c)^(1
/2))^(1/2)/(-(b^2*c)^(1/2)-a)^(1/2))*a+5/16*b^2*d^2/c/(b*(d*x+c)^(1/2)+(b^2*c)^(1/2))^2/(b^2*c-2*a*(b^2*c)^(1/
2)+a^2)*(a+b*(d*x+c)^(1/2))^(3/2)-1/8*b^2*d^2/c/(b^2*c)^(1/2)/(b*(d*x+c)^(1/2)+(b^2*c)^(1/2))^2/(b^2*c-2*a*(b^
2*c)^(1/2)+a^2)*(a+b*(d*x+c)^(1/2))^(3/2)*a-7/16*b^2*d^2/c/(b*(d*x+c)^(1/2)+(b^2*c)^(1/2))^2/(-(b^2*c)^(1/2)+a
)*(a+b*(d*x+c)^(1/2))^(1/2)+1/8*b^2*d^2/c/(b^2*c)^(1/2)/(b*(d*x+c)^(1/2)+(b^2*c)^(1/2))^2/(-(b^2*c)^(1/2)+a)*(
a+b*(d*x+c)^(1/2))^(1/2)*a-5/16*b^2*d^2/c/(-b^2*c+2*a*(b^2*c)^(1/2)-a^2)/((b^2*c)^(1/2)-a)^(1/2)*arctan((a+b*(
d*x+c)^(1/2))^(1/2)/((b^2*c)^(1/2)-a)^(1/2))+1/8*b^2*d^2/c/(b^2*c)^(1/2)/(-b^2*c+2*a*(b^2*c)^(1/2)-a^2)/((b^2*
c)^(1/2)-a)^(1/2)*arctan((a+b*(d*x+c)^(1/2))^(1/2)/((b^2*c)^(1/2)-a)^(1/2))*a

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\sqrt{d x + c} b + a} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*(d*x+c)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(sqrt(d*x + c)*b + a)*x^3), x)

________________________________________________________________________________________

Fricas [B]  time = 6.74201, size = 9651, normalized size = 36.98 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*(d*x+c)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

-1/32*((b^4*c^3 - 2*a^2*b^2*c^2 + a^4*c)*x^2*sqrt(-((105*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^2
)*d^4 + (b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^18
*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18
*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a
^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*
a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3))*log((625*b^12*c^3 + 3750*a^2*b^10*c^2 - 1491*a^4*b^8*c + 140*a^6*b^6)
*sqrt(sqrt(d*x + c)*b + a)*d^6 + ((325*a*b^12*c^5 + 1977*a^3*b^10*c^4 - 609*a^5*b^8*c^3 + 35*a^7*b^6*c^2)*d^4
- (5*b^14*c^10 - 16*a^2*b^12*c^9 + 3*a^4*b^10*c^8 + 50*a^6*b^8*c^7 - 85*a^8*b^6*c^6 + 60*a^10*b^4*c^5 - 19*a^1
2*b^2*c^4 + 2*a^14*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*
a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^
10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))*sqrt(-((10
5*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^2)*d^4 + (b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10
*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a
^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*
b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*
c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3))) - (b^4*c^3 -
2*a^2*b^2*c^2 + a^4*c)*x^2*sqrt(-((105*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^2)*d^4 + (b^10*c^8
- 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^
16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^1
6*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a
^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^
8*b^2*c^4 - a^10*c^3))*log((625*b^12*c^3 + 3750*a^2*b^10*c^2 - 1491*a^4*b^8*c + 140*a^6*b^6)*sqrt(sqrt(d*x + c
)*b + a)*d^6 - ((325*a*b^12*c^5 + 1977*a^3*b^10*c^4 - 609*a^5*b^8*c^3 + 35*a^7*b^6*c^2)*d^4 - (5*b^14*c^10 - 1
6*a^2*b^12*c^9 + 3*a^4*b^10*c^8 + 50*a^6*b^8*c^7 - 85*a^8*b^6*c^6 + 60*a^10*b^4*c^5 - 19*a^12*b^2*c^4 + 2*a^14
*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^2
0*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*
a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))*sqrt(-((105*a*b^8*c^3 + 70*a
^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^2)*d^4 + (b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a
^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a
^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^1
0*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))/(b^10*c^8 -
 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3))) + (b^4*c^3 - 2*a^2*b^2*c^2 + a^
4*c)*x^2*sqrt(-((105*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^2)*d^4 - (b^10*c^8 - 5*a^2*b^8*c^7 +
10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4
*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b
^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a
^18*b^2*c^4 + a^20*c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c
^3))*log((625*b^12*c^3 + 3750*a^2*b^10*c^2 - 1491*a^4*b^8*c + 140*a^6*b^6)*sqrt(sqrt(d*x + c)*b + a)*d^6 + ((3
25*a*b^12*c^5 + 1977*a^3*b^10*c^4 - 609*a^5*b^8*c^3 + 35*a^7*b^6*c^2)*d^4 + (5*b^14*c^10 - 16*a^2*b^12*c^9 + 3
*a^4*b^10*c^8 + 50*a^6*b^8*c^7 - 85*a^8*b^6*c^6 + 60*a^10*b^4*c^5 - 19*a^12*b^2*c^4 + 2*a^14*c^3)*sqrt((625*b^
18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^
18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120
*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))*sqrt(-((105*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^
5*b^4*c + 4*a^7*b^2)*d^4 - (b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*
c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20
*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a
^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 1
0*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3))) - (b^4*c^3 - 2*a^2*b^2*c^2 + a^4*c)*x^2*sqrt(-((1
05*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^2)*d^4 - (b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 1
0*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*
a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8
*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20
*c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3))*log((625*b^12
*c^3 + 3750*a^2*b^10*c^2 - 1491*a^4*b^8*c + 140*a^6*b^6)*sqrt(sqrt(d*x + c)*b + a)*d^6 - ((325*a*b^12*c^5 + 19
77*a^3*b^10*c^4 - 609*a^5*b^8*c^3 + 35*a^7*b^6*c^2)*d^4 + (5*b^14*c^10 - 16*a^2*b^12*c^9 + 3*a^4*b^10*c^8 + 50
*a^6*b^8*c^7 - 85*a^8*b^6*c^6 + 60*a^10*b^4*c^5 - 19*a^12*b^2*c^4 + 2*a^14*c^3)*sqrt((625*b^18*c^4 + 7700*a^2*
b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^18*c^12 + 45*a^4*b
^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*a^14*b^6*c^6 + 45
*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))*sqrt(-((105*a*b^8*c^3 + 70*a^3*b^6*c^2 - 35*a^5*b^4*c + 4*a^7*b^
2)*d^4 - (b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3)*sqrt((625*b^1
8*c^4 + 7700*a^2*b^16*c^3 + 21966*a^4*b^14*c^2 - 10780*a^6*b^12*c + 1225*a^8*b^10)*d^8/(b^20*c^13 - 10*a^2*b^1
8*c^12 + 45*a^4*b^16*c^11 - 120*a^6*b^14*c^10 + 210*a^8*b^12*c^9 - 252*a^10*b^10*c^8 + 210*a^12*b^8*c^7 - 120*
a^14*b^6*c^6 + 45*a^16*b^4*c^5 - 10*a^18*b^2*c^4 + a^20*c^3)))/(b^10*c^8 - 5*a^2*b^8*c^7 + 10*a^4*b^6*c^6 - 10
*a^6*b^4*c^5 + 5*a^8*b^2*c^4 - a^10*c^3))) + 4*(6*a*b^2*c*d*x - 4*a*b^2*c^2 + 4*a^3*c + (4*b^3*c^2 - 4*a^2*b*c
 - (5*b^3*c + a^2*b)*d*x)*sqrt(d*x + c))*sqrt(sqrt(d*x + c)*b + a))/((b^4*c^3 - 2*a^2*b^2*c^2 + a^4*c)*x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \sqrt{a + b \sqrt{c + d x}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(a+b*(d*x+c)**(1/2))**(1/2),x)

[Out]

Integral(1/(x**3*sqrt(a + b*sqrt(c + d*x))), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*(d*x+c)^(1/2))^(1/2),x, algorithm="giac")

[Out]

Timed out