3.601 \(\int \frac{(c+d x)^{3/2}}{\sqrt{a+\frac{b}{x^2}}} \, dx\)

Optimal. Leaf size=406 \[ -\frac{2 \sqrt{b} c \sqrt{\frac{a x^2}{b}+1} \left (a c^2+b d^2\right ) \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-a} \sqrt{b} d}{a c-\sqrt{-a} \sqrt{b} d}\right )}{5 (-a)^{3/2} d x \sqrt{a+\frac{b}{x^2}} \sqrt{c+d x}}+\frac{2 \sqrt{b} \sqrt{\frac{a x^2}{b}+1} \sqrt{c+d x} \left (a c^2-3 b d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-a} \sqrt{b} d}{a c-\sqrt{-a} \sqrt{b} d}\right )}{5 (-a)^{3/2} d x \sqrt{a+\frac{b}{x^2}} \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}}}+\frac{2 \left (a x^2+b\right ) (c+d x)^{3/2}}{5 a x \sqrt{a+\frac{b}{x^2}}}+\frac{2 c \left (a x^2+b\right ) \sqrt{c+d x}}{5 a x \sqrt{a+\frac{b}{x^2}}} \]

[Out]

(2*c*Sqrt[c + d*x]*(b + a*x^2))/(5*a*Sqrt[a + b/x^2]*x) + (2*(c + d*x)^(3/2)*(b + a*x^2))/(5*a*Sqrt[a + b/x^2]
*x) + (2*Sqrt[b]*(a*c^2 - 3*b*d^2)*Sqrt[c + d*x]*Sqrt[1 + (a*x^2)/b]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[-a]*x)/Sq
rt[b]]/Sqrt[2]], (-2*Sqrt[-a]*Sqrt[b]*d)/(a*c - Sqrt[-a]*Sqrt[b]*d)])/(5*(-a)^(3/2)*d*Sqrt[a + b/x^2]*x*Sqrt[(
a*(c + d*x))/(a*c - Sqrt[-a]*Sqrt[b]*d)]) - (2*Sqrt[b]*c*(a*c^2 + b*d^2)*Sqrt[(a*(c + d*x))/(a*c - Sqrt[-a]*Sq
rt[b]*d)]*Sqrt[1 + (a*x^2)/b]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[-a]*x)/Sqrt[b]]/Sqrt[2]], (-2*Sqrt[-a]*Sqrt[b]*d
)/(a*c - Sqrt[-a]*Sqrt[b]*d)])/(5*(-a)^(3/2)*d*Sqrt[a + b/x^2]*x*Sqrt[c + d*x])

________________________________________________________________________________________

Rubi [A]  time = 0.463681, antiderivative size = 406, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {1450, 833, 844, 719, 424, 419} \[ -\frac{2 \sqrt{b} c \sqrt{\frac{a x^2}{b}+1} \left (a c^2+b d^2\right ) \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-a} \sqrt{b} d}{a c-\sqrt{-a} \sqrt{b} d}\right )}{5 (-a)^{3/2} d x \sqrt{a+\frac{b}{x^2}} \sqrt{c+d x}}+\frac{2 \sqrt{b} \sqrt{\frac{a x^2}{b}+1} \sqrt{c+d x} \left (a c^2-3 b d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-a} \sqrt{b} d}{a c-\sqrt{-a} \sqrt{b} d}\right )}{5 (-a)^{3/2} d x \sqrt{a+\frac{b}{x^2}} \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}}}+\frac{2 \left (a x^2+b\right ) (c+d x)^{3/2}}{5 a x \sqrt{a+\frac{b}{x^2}}}+\frac{2 c \left (a x^2+b\right ) \sqrt{c+d x}}{5 a x \sqrt{a+\frac{b}{x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(3/2)/Sqrt[a + b/x^2],x]

[Out]

(2*c*Sqrt[c + d*x]*(b + a*x^2))/(5*a*Sqrt[a + b/x^2]*x) + (2*(c + d*x)^(3/2)*(b + a*x^2))/(5*a*Sqrt[a + b/x^2]
*x) + (2*Sqrt[b]*(a*c^2 - 3*b*d^2)*Sqrt[c + d*x]*Sqrt[1 + (a*x^2)/b]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[-a]*x)/Sq
rt[b]]/Sqrt[2]], (-2*Sqrt[-a]*Sqrt[b]*d)/(a*c - Sqrt[-a]*Sqrt[b]*d)])/(5*(-a)^(3/2)*d*Sqrt[a + b/x^2]*x*Sqrt[(
a*(c + d*x))/(a*c - Sqrt[-a]*Sqrt[b]*d)]) - (2*Sqrt[b]*c*(a*c^2 + b*d^2)*Sqrt[(a*(c + d*x))/(a*c - Sqrt[-a]*Sq
rt[b]*d)]*Sqrt[1 + (a*x^2)/b]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[-a]*x)/Sqrt[b]]/Sqrt[2]], (-2*Sqrt[-a]*Sqrt[b]*d
)/(a*c - Sqrt[-a]*Sqrt[b]*d)])/(5*(-a)^(3/2)*d*Sqrt[a + b/x^2]*x*Sqrt[c + d*x])

Rule 1450

Int[((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Dist[(x^(2*n*FracPart[p])*
(a + c/x^(2*n))^FracPart[p])/(c + a*x^(2*n))^FracPart[p], Int[((d + e*x^n)^q*(c + a*x^(2*n))^p)/x^(2*n*p), x],
 x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[mn2, -2*n] &&  !IntegerQ[p] &&  !IntegerQ[q] && PosQ[n]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g*(d + e*x)
^m*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(c+d x)^{3/2}}{\sqrt{a+\frac{b}{x^2}}} \, dx &=\frac{\sqrt{b+a x^2} \int \frac{x (c+d x)^{3/2}}{\sqrt{b+a x^2}} \, dx}{\sqrt{a+\frac{b}{x^2}} x}\\ &=\frac{2 (c+d x)^{3/2} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{\left (2 \sqrt{b+a x^2}\right ) \int \frac{\left (-\frac{3 b d}{2}+\frac{3 a c x}{2}\right ) \sqrt{c+d x}}{\sqrt{b+a x^2}} \, dx}{5 a \sqrt{a+\frac{b}{x^2}} x}\\ &=\frac{2 c \sqrt{c+d x} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{2 (c+d x)^{3/2} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{\left (4 \sqrt{b+a x^2}\right ) \int \frac{-3 a b c d+\frac{3}{4} a \left (a c^2-3 b d^2\right ) x}{\sqrt{c+d x} \sqrt{b+a x^2}} \, dx}{15 a^2 \sqrt{a+\frac{b}{x^2}} x}\\ &=\frac{2 c \sqrt{c+d x} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{2 (c+d x)^{3/2} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{\left (\left (a c^2-3 b d^2\right ) \sqrt{b+a x^2}\right ) \int \frac{\sqrt{c+d x}}{\sqrt{b+a x^2}} \, dx}{5 a d \sqrt{a+\frac{b}{x^2}} x}-\frac{\left (c \left (a c^2+b d^2\right ) \sqrt{b+a x^2}\right ) \int \frac{1}{\sqrt{c+d x} \sqrt{b+a x^2}} \, dx}{5 a d \sqrt{a+\frac{b}{x^2}} x}\\ &=\frac{2 c \sqrt{c+d x} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{2 (c+d x)^{3/2} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{\left (2 \sqrt{-a} \sqrt{b} \left (a c^2-3 b d^2\right ) \sqrt{c+d x} \sqrt{1+\frac{a x^2}{b}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{-a} \sqrt{b} d x^2}{a c-\sqrt{-a} \sqrt{b} d}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )}{5 a^2 d \sqrt{a+\frac{b}{x^2}} x \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}}}-\frac{\left (2 \sqrt{-a} \sqrt{b} c \left (a c^2+b d^2\right ) \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}} \sqrt{1+\frac{a x^2}{b}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{-a} \sqrt{b} d x^2}{a c-\sqrt{-a} \sqrt{b} d}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )}{5 a^2 d \sqrt{a+\frac{b}{x^2}} x \sqrt{c+d x}}\\ &=\frac{2 c \sqrt{c+d x} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{2 (c+d x)^{3/2} \left (b+a x^2\right )}{5 a \sqrt{a+\frac{b}{x^2}} x}+\frac{2 \sqrt{b} \left (a c^2-3 b d^2\right ) \sqrt{c+d x} \sqrt{1+\frac{a x^2}{b}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-a} \sqrt{b} d}{a c-\sqrt{-a} \sqrt{b} d}\right )}{5 (-a)^{3/2} d \sqrt{a+\frac{b}{x^2}} x \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}}}-\frac{2 \sqrt{b} c \left (a c^2+b d^2\right ) \sqrt{\frac{a (c+d x)}{a c-\sqrt{-a} \sqrt{b} d}} \sqrt{1+\frac{a x^2}{b}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{-a} x}{\sqrt{b}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-a} \sqrt{b} d}{a c-\sqrt{-a} \sqrt{b} d}\right )}{5 (-a)^{3/2} d \sqrt{a+\frac{b}{x^2}} x \sqrt{c+d x}}\\ \end{align*}

Mathematica [C]  time = 3.03285, size = 540, normalized size = 1.33 \[ \frac{\sqrt{c+d x} \left (\frac{2 \left (a x^2+b\right ) (2 c+d x)}{a}+\frac{2 \left (d^2 \sqrt{-c-\frac{i \sqrt{b} d}{\sqrt{a}}} \left (a^2 c^2 x^2+a b \left (c^2-3 d^2 x^2\right )-3 b^2 d^2\right )+\sqrt{a} (c+d x)^{3/2} \left (-i a^{3/2} c^3+a \sqrt{b} c^2 d+3 i \sqrt{a} b c d^2-3 b^{3/2} d^3\right ) \sqrt{\frac{d \left (x+\frac{i \sqrt{b}}{\sqrt{a}}\right )}{c+d x}} \sqrt{-\frac{-d x+\frac{i \sqrt{b} d}{\sqrt{a}}}{c+d x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-c-\frac{i \sqrt{b} d}{\sqrt{a}}}}{\sqrt{c+d x}}\right )|\frac{\sqrt{a} c-i \sqrt{b} d}{\sqrt{a} c+i \sqrt{b} d}\right )-\sqrt{a} \sqrt{b} d (c+d x)^{3/2} \left (4 i \sqrt{a} \sqrt{b} c d+a c^2-3 b d^2\right ) \sqrt{\frac{d \left (x+\frac{i \sqrt{b}}{\sqrt{a}}\right )}{c+d x}} \sqrt{-\frac{-d x+\frac{i \sqrt{b} d}{\sqrt{a}}}{c+d x}} F\left (i \sinh ^{-1}\left (\frac{\sqrt{-c-\frac{i \sqrt{b} d}{\sqrt{a}}}}{\sqrt{c+d x}}\right )|\frac{\sqrt{a} c-i \sqrt{b} d}{\sqrt{a} c+i \sqrt{b} d}\right )\right )}{a^2 d^2 (c+d x) \sqrt{-c-\frac{i \sqrt{b} d}{\sqrt{a}}}}\right )}{5 x \sqrt{a+\frac{b}{x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(3/2)/Sqrt[a + b/x^2],x]

[Out]

(Sqrt[c + d*x]*((2*(2*c + d*x)*(b + a*x^2))/a + (2*(d^2*Sqrt[-c - (I*Sqrt[b]*d)/Sqrt[a]]*(-3*b^2*d^2 + a^2*c^2
*x^2 + a*b*(c^2 - 3*d^2*x^2)) + Sqrt[a]*((-I)*a^(3/2)*c^3 + a*Sqrt[b]*c^2*d + (3*I)*Sqrt[a]*b*c*d^2 - 3*b^(3/2
)*d^3)*Sqrt[(d*((I*Sqrt[b])/Sqrt[a] + x))/(c + d*x)]*Sqrt[-(((I*Sqrt[b]*d)/Sqrt[a] - d*x)/(c + d*x))]*(c + d*x
)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-c - (I*Sqrt[b]*d)/Sqrt[a]]/Sqrt[c + d*x]], (Sqrt[a]*c - I*Sqrt[b]*d)/(Sqrt[a
]*c + I*Sqrt[b]*d)] - Sqrt[a]*Sqrt[b]*d*(a*c^2 + (4*I)*Sqrt[a]*Sqrt[b]*c*d - 3*b*d^2)*Sqrt[(d*((I*Sqrt[b])/Sqr
t[a] + x))/(c + d*x)]*Sqrt[-(((I*Sqrt[b]*d)/Sqrt[a] - d*x)/(c + d*x))]*(c + d*x)^(3/2)*EllipticF[I*ArcSinh[Sqr
t[-c - (I*Sqrt[b]*d)/Sqrt[a]]/Sqrt[c + d*x]], (Sqrt[a]*c - I*Sqrt[b]*d)/(Sqrt[a]*c + I*Sqrt[b]*d)]))/(a^2*d^2*
Sqrt[-c - (I*Sqrt[b]*d)/Sqrt[a]]*(c + d*x))))/(5*Sqrt[a + b/x^2]*x)

________________________________________________________________________________________

Maple [B]  time = 0.108, size = 1145, normalized size = 2.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(3/2)/(a+b/x^2)^(1/2),x)

[Out]

2/5*((-a*b)^(1/2)*(-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2)*((-a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d+a*c))^(1/2)*(
(a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d-a*c))^(1/2)*EllipticF((-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2),(-((-a*b)^(
1/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))^(1/2))*a*c^3*d+(-a*b)^(1/2)*(-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2)*((-a*x+(
-a*b)^(1/2))*d/((-a*b)^(1/2)*d+a*c))^(1/2)*((a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d-a*c))^(1/2)*EllipticF((-(d*x+
c)*a/((-a*b)^(1/2)*d-a*c))^(1/2),(-((-a*b)^(1/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))^(1/2))*b*c*d^3-3*(-(d*x+c)*a/((-
a*b)^(1/2)*d-a*c))^(1/2)*((-a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d+a*c))^(1/2)*((a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2
)*d-a*c))^(1/2)*EllipticF((-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2),(-((-a*b)^(1/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))
^(1/2))*a*b*c^2*d^2-3*b^2*(-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2)*((-a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d+a*c))
^(1/2)*((a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d-a*c))^(1/2)*EllipticF((-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2),(-(
(-a*b)^(1/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))^(1/2))*d^4-(-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2)*((-a*x+(-a*b)^(1/
2))*d/((-a*b)^(1/2)*d+a*c))^(1/2)*((a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d-a*c))^(1/2)*EllipticE((-(d*x+c)*a/((-a
*b)^(1/2)*d-a*c))^(1/2),(-((-a*b)^(1/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))^(1/2))*a^2*c^4+2*(-(d*x+c)*a/((-a*b)^(1/2
)*d-a*c))^(1/2)*((-a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d+a*c))^(1/2)*((a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d-a*c))
^(1/2)*EllipticE((-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2),(-((-a*b)^(1/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))^(1/2))*a
*b*c^2*d^2+3*b^2*(-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2)*((-a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d+a*c))^(1/2)*((
a*x+(-a*b)^(1/2))*d/((-a*b)^(1/2)*d-a*c))^(1/2)*EllipticE((-(d*x+c)*a/((-a*b)^(1/2)*d-a*c))^(1/2),(-((-a*b)^(1
/2)*d-a*c)/((-a*b)^(1/2)*d+a*c))^(1/2))*d^4+x^4*a^2*d^4+3*x^3*a^2*c*d^3+2*x^2*a^2*c^2*d^2+x^2*a*b*d^4+3*x*a*b*
c*d^3+2*a*b*c^2*d^2)/(d*x+c)^(1/2)/d^2/a^2/x/((a*x^2+b)/x^2)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{3}{2}}}{\sqrt{a + \frac{b}{x^{2}}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(a+b/x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(3/2)/sqrt(a + b/x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d x^{3} + c x^{2}\right )} \sqrt{d x + c} \sqrt{\frac{a x^{2} + b}{x^{2}}}}{a x^{2} + b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(a+b/x^2)^(1/2),x, algorithm="fricas")

[Out]

integral((d*x^3 + c*x^2)*sqrt(d*x + c)*sqrt((a*x^2 + b)/x^2)/(a*x^2 + b), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(3/2)/(a+b/x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{3}{2}}}{\sqrt{a + \frac{b}{x^{2}}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(a+b/x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x + c)^(3/2)/sqrt(a + b/x^2), x)